Tight p-fusion frames

被引:28
|
作者
Bachoc, C. [1 ]
Ehler, M. [2 ]
机构
[1] Univ Bordeaux, IMB, UMR 5251, F-33400 Talence, France
[2] Helmholtz Zentrum Munchen, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
关键词
Fusion frame potential; Grassmann space; Cubature formula; Design; Equiangular; Simplex bound; SPHERICAL DESIGNS; CODES; BOUNDS;
D O I
10.1016/j.acha.2012.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fusion frames enable signal decompositions into weighted linear subspace components. For positive integers p, we introduce p-fusion frames, a sharpening of the notion of fusion frames. Tight p-fusion frames are closely related to the classical notions of designs and cubature formulas in Grassmann spaces and are analyzed with methods from harmonic analysis in the Grassmannians. We define the p-fusion frame potential, derive bounds for its value, and discuss the connections to tight p-fusion frames. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Group cohomology and control of p-fusion
    Benson, David J.
    Grodal, Jesper
    Henke, Ellen
    INVENTIONES MATHEMATICAE, 2014, 197 (03) : 491 - 507
  • [2] Group cohomology and control of p-fusion
    David J. Benson
    Jesper Grodal
    Ellen Henke
    Inventiones mathematicae, 2014, 197 : 491 - 507
  • [3] Equichordal Tight Fusion Frames
    Mohammadpour, Mozhgan
    Kamyabi-Gol, Rajab Ali
    Hodtani, Ghosheh Abed
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 889 - 900
  • [4] Equichordal Tight Fusion Frames
    Mozhgan Mohammadpour
    Rajab Ali Kamyabi-Gol
    Ghosheh Abed Hodtani
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 889 - 900
  • [5] Constructing tight fusion frames
    Casazza, Peter G.
    Fickus, Matthew
    Mixon, Dustin G.
    Wang, Yang
    Zhou, Zhengfang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 30 (02) : 175 - 187
  • [6] Characterizations of Finite Groups with P-Fusion of Squarefree Type
    Foote, Richard
    Welz, Matthew
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (02) : 697 - 706
  • [7] Tight and random nonorthogonal fusion frames
    Cahill, Jameson
    Casazza, Peter G.
    Ehler, Martin
    Li, Shidong
    TRENDS IN HARMONIC ANALYSIS AND ITS APPLICATIONS, 2015, 650 : 23 - 36
  • [8] A COMBINATORIAL CHARACTERIZATION OF TIGHT FUSION FRAMES
    Bownik, Marcin
    Luoto, Kurt
    Richmond, Edward
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 275 (02) : 257 - 294
  • [9] Random fusion frames are nearly equiangular and tight
    Bodmann, Bernhard G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1401 - 1414
  • [10] On p-adic tight wavelet frames
    Lukomskii, S. F.
    Vodolazov, A. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)