Improved Object Categorization and Detection Using Comparative Object Similarity

被引:17
|
作者
Wang, Gang [1 ,2 ]
Forsyth, David [3 ]
Hoiem, Derek [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639807, Singapore
[2] Adv Digital Sci Ctr, Singapore 639807, Singapore
[3] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
关键词
Comparative object similarity; object categorization; object detection; kernel machines; SVM; deformable part model; PASCAL VOC; sharing; FEATURES; CLASSIFICATION;
D O I
10.1109/TPAMI.2013.58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the intrinsic long-tailed distribution of objects in the real world, we are unlikely to be able to train an object recognizer/detector with many visual examples for each category. We have to share visual knowledge between object categories to enable learning with few or no training examples. In this paper, we show that local object similarity information-statements that pairs of categories are similar or dissimilar-is a very useful cue to tie different categories to each other for effective knowledge transfer. The key insight: Given a set of object categories which are similar and a set of categories which are dissimilar, a good object model should respond more strongly to examples from similar categories than to examples from dissimilar categories. To exploit this category-dependent similarity regularization, we develop a regularized kernel machine algorithm to train kernel classifiers for categories with few or no training examples. We also adapt the state-of-the-art object detector [10] to encode object similarity constraints. Our experiments on hundreds of categories from the Labelme dataset show that our regularized kernel classifiers can make significant improvement on object categorization. We also evaluate the improved object detector on the PASCAL VOC 2007 benchmark dataset.
引用
收藏
页码:2442 / 2453
页数:12
相关论文
共 50 条
  • [1] An Improved HIK for Object Categorization
    Wu, Lu
    Liu, Quan
    Wei, Qin
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [2] VIDEO CATEGORIZATION USING OBJECT OF INTEREST DETECTION
    Kowdle, Adarsh
    Chang, Kuo-Wei
    Chen, Tsuhan
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4569 - 4572
  • [3] Comparative object similarity for improved recognition with few or no examples
    Wang, Gang
    Forsyth, David
    Hoiem, Derek
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3525 - 3532
  • [4] Decoupling Object Detection and Categorization
    Mack, Michael L.
    Palmeri, Thomas J.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE, 2010, 36 (05) : 1067 - 1079
  • [5] The subjective experience of object recognition: comparing metacognition for object detection and object categorization
    Julia D. I. Meuwese
    Anouk M. van Loon
    Victor A. F. Lamme
    Johannes J. Fahrenfort
    Attention, Perception, & Psychophysics, 2014, 76 : 1057 - 1068
  • [6] The subjective experience of object recognition: comparing metacognition for object detection and object categorization
    Meuwese, Julia D. I.
    van Loon, Anouk M.
    Lamme, Victor A. F.
    Fahrenfort, Johannes J.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2014, 76 (04) : 1057 - 1068
  • [7] Improved Feature Extraction and Similarity Algorithm for Video Object Detection
    You, Haotian
    Lu, Yufang
    Tang, Haihua
    INFORMATION, 2023, 14 (02)
  • [8] Time-course of object detection and categorization in fragmented object contours
    Taniguchi, K.
    Tayama, T.
    Panis, S.
    Wagemans, J.
    PERCEPTION, 2013, 42 : 125 - 125
  • [9] Object Categorization
    Pinz, Axel
    FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2005, 1 (04): : 255 - 353
  • [10] Object Detection Based on Improved Exemplar SVMs Using a Generic Object Measure
    Chen, Hao
    Zhang, Shanshan
    Yang, Jinfu
    Zhang, Qiang
    INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 1, 2017, 454 : 243 - 251