Lattice points;
convex domains;
Fourier transform;
Van der Corput's method;
BODIES;
DISCREPANCY;
NUMBER;
D O I:
10.4171/RMI/839
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
If B subset of R-d (d >= 2) is a compact convex domain with a smooth boundary of finite type, we prove that for almost every rotation theta is an element of SO(d) the remainder of the lattice point problem, P-theta B (t) is of order O-theta(t(d-2+2/(d+1)-zeta d)) with a positive number zeta(d). Furthermore we extend the estimate of the above type, in the planar case, to general compact convex domains.