EMBEDDING COCYCLIC D-OPTIMAL DESIGNS IN COCYCLIC HADAMARD MATRICES

被引:0
|
作者
Alvarez, Victor [1 ]
Andres Armario, Jose [1 ]
Dolores Frau, Maria [1 ]
Guidiel, Felix [1 ]
机构
[1] Univ Seville, Dept Appl Math 1, E-41012 Seville, Spain
来源
关键词
D-optimal Designs; Cocyclic Hadamard matrices; Embedded matrices; Gaussian elimination pivots; GROWTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method for embedding cocyclic submatrices with "large" determinants of orders 2t in certain cocyclic Hadamard matrices of orders 4t is described (t an odd integer). If these determinants attain the largest possible value, we are embedding D-optimal designs. Applications to the pivot values that appear when Gaussian elimination with complete pivoting is performed on these cocyclic Hadamard matrices are studied.
引用
收藏
页码:66 / 82
页数:17
相关论文
共 50 条
  • [1] On a family of cocyclic Hadamard matrices
    de Launey, W
    CODES AND DESIGNS, 2002, 10 : 187 - 205
  • [2] Hadamard Matrices with Cocyclic Core
    Alvarez, Victor
    Armario, Jose Andres
    Frau, Maria Dolores
    Gudiel, Felix
    Guemes, Maria Belen
    Osuna, Amparo
    MATHEMATICS, 2021, 9 (08)
  • [3] A genetic algorithm for cocyclic Hadamard matrices
    Alvarez, V
    Armario, JA
    Frau, MD
    Real, P
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2006, 3857 : 144 - 153
  • [4] On D4t-Cocyclic Hadamard Matrices
    Alvarez, Victor
    Andres Armario, Jose
    Dolores Frau, Maria
    Gudiel, Felix
    Belen Guemes, Maria
    Osuna, Amparo
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (08) : 352 - 368
  • [5] An introduction to cocyclic generalised Hadamard matrices
    Horadam, KJ
    DISCRETE APPLIED MATHEMATICS, 2000, 102 (1-2) : 115 - 131
  • [6] Cocyclic Hadamard matrices and hadamard groups are equivalent
    Flannery, DL
    JOURNAL OF ALGEBRA, 1997, 192 (02) : 749 - 779
  • [7] Cocyclic Hadamard matrices and difference sets
    de Launey, W
    Flannery, DL
    Horadam, KJ
    DISCRETE APPLIED MATHEMATICS, 2000, 102 (1-2) : 47 - 61
  • [8] On higher dimensional cocyclic Hadamard matrices
    V. Álvarez
    J. A. Armario
    M. D. Frau
    P. Real
    Applicable Algebra in Engineering, Communication and Computing, 2015, 26 : 191 - 206
  • [9] Classifying Cocyclic Butson Hadamard Matrices
    Egan, Ronan
    Flannery, Dane
    Cathain, Padraig O.
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 93 - 106
  • [10] On an inequivalence criterion for cocyclic Hadamard matrices
    Andres Armario, Jose
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2010, 2 (02): : 247 - 259