'Path' and 'time' estimates in the Monte Carlo method

被引:2
|
作者
Burmistrov, AV [1 ]
Mikhailov, GA [1 ]
机构
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Siberian Branch, Novosibirsk 630090, Russia
关键词
D O I
10.1515/rnam.1999.14.3.221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose new weight modifications of a 'path' estimate for the calculation of Linear functionals (Phi, h) of radiation intensity Phi. In the framework of the 'collision' model of a transport process we mathematically justify the estimate, including variance finiteness, in the case of the function h with alternating signs. We construct and justify the analogous 'time' estimate for the calculation of linear functionals of the concentration of particles moving along trajectories of multidimensional diffusion processes (the concentration of trajectories for brevity).
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条
  • [1] New approach to constructing and substantiating the "path estimates" in the Monte Carlo method
    Mikhailov, GA
    [J]. DOKLADY AKADEMII NAUK, 1998, 358 (01) : 22 - 25
  • [2] Monte Carlo method for real-time path integration
    Sabo, D
    Doll, JD
    Freeman, DL
    [J]. MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 396 - 397
  • [3] FROM ROUGH PATH ESTIMATES TO MULTILEVEL MONTE CARLO
    Bayer, Christian
    Friz, Peter K.
    Riedel, Sebastian
    Schoenmakers, John
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1449 - 1483
  • [4] Obtaining Uncertainty Estimates Compatible with Estimates of Monte Carlo Method
    Zakharov, Igor
    Botsiura, Olesia
    Neyezhmakov, Pavel
    [J]. 2019 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON MEASUREMENT (MEASUREMENT 2019), 2019, : 47 - 50
  • [5] Study of polarization estimates variance by the Monte Carlo method
    Mikhailov, GA
    Chimaeva, AS
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2005, 20 (03) : 305 - 317
  • [6] MINIMAX WEIGHT ESTIMATES OF THE MONTE-CARLO METHOD
    MIKHAILOV, GA
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (01) : 188 - 189
  • [7] The time estimate in the Monte Carlo method
    Mikhailov, GA
    Burmistrov, AV
    [J]. DOKLADY AKADEMII NAUK, 1999, 367 (01) : 7 - 10
  • [8] Entropic sampling in the path integral Monte Carlo method
    Vorontsov-Velyaminov, PN
    Lyubartsev, AP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (03): : 685 - 693
  • [9] A constrained path Monte Carlo method for nucleon systems
    Schmidt, KE
    Sarsa, A
    Fantoni, S
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1510 - 1518
  • [10] Path integral Monte Carlo method for option pricing
    Capuozzo, Pietro
    Panella, Emanuele
    Gherardini, Tancredi Schettini
    Vvedensky, Dimitri D.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 581