Efficient skyrmion transport mediated by a voltage controlled magnetic anisotropy gradient

被引:66
|
作者
Wang, Xuan [1 ,2 ]
Gan, W. L. [1 ]
Martinez, J. C. [3 ]
Tan, F. N. [1 ]
Jalil, M. B. A. [3 ]
Lew, W. S. [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[2] Lanzhou Univ Technol, Sch Sci, Dept Phys, Lanzhou 730050, Gansu, Peoples R China
[3] Natl Univ Singapore, Elect & Comp Engn Dept, 4 Engn Dr 3, Singapore 117576, Singapore
基金
新加坡国家研究基金会;
关键词
DOMAIN-WALL MOTION; ATOMIC LAYERS; DYNAMICS; MANIPULATION; FILMS;
D O I
10.1039/c7nr06482a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the inefficiencies associated with current-induced spin torques, they remain the predominant mode of skyrmion propulsion. In this work, we demonstrate numerically that skyrmions can be transported much more efficiently with a voltage-controlled magnetic anisotropy (VCMA) gradient. An analytical model was developed to understand the underlying skyrmion dynamics on a track under the VCMA conditions. Our calculations reveal that the repulsive skyrmion-edge interaction not only prevents the skyrmion from annihilating but also generates most of the skyrmion propulsion. A multiplexed array of gate electrodes can be used to create discrete anisotropy gradients over a long distance, leading to the formation of a series of translatable skyrmion potential wells. Due to the strong confining potentials, skyrmions are transported at a 70% higher packing density. Finally, we demonstrated that this form of skyrmion propulsion can also be implemented on almost any 2D geometry, providing improved versatility over current-induced methods.
引用
收藏
页码:733 / 740
页数:8
相关论文
共 50 条
  • [1] Skyrmion motion driven by the gradient of voltage-controlled magnetic anisotropy
    Xia, Haiyan
    Song, Chengkun
    Jin, Chendong
    Wang, Jinshuai
    Wang, Jianbo
    Liu, Qingfang
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 458 : 57 - 61
  • [2] Controllable transport of a skyrmion in a ferromagnetic narrow channel with voltage-controlled magnetic anisotropy
    Wang, Junlin
    Xia, Jing
    Zhang, Xichao
    Zhao, G. P.
    Ye, Lei
    Wu, Jing
    Xu, Yongbing
    Zhao, Weisheng
    Zou, Zhigang
    Zhou, Yan
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (20)
  • [3] Magnetic Skyrmion Transistor Gated with Voltage-Controlled Magnetic Anisotropy
    Yang, Seungmo
    Son, Jong Wan
    Ju, Tae-Seong
    Tran, Duc Minh
    Han, Hee-Sung
    Park, Sungkyun
    Park, Bae Ho
    Moon, Kyoung-Woong
    Hwang, Chanyong
    [J]. ADVANCED MATERIALS, 2023, 35 (09)
  • [4] Skyrmion logic clocked via voltage-controlled magnetic anisotropy
    Walker, Benjamin W.
    Cui, Can
    Garcia-Sanchez, Felipe
    Incorvia, Jean Anne C.
    Hu, Xuan
    Friedman, Joseph S.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (19)
  • [5] Bilayer skyrmion dynamics on a magnetic anisotropy gradient
    Ang, Calvin Ching Ian
    Gan, Weiliang
    Lew, Wen Siang
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (04)
  • [6] Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient
    Shen, Laichuan
    Xia, Jing
    Zhao, Guoping
    Zhang, Xichao
    Ezawa, Motohiko
    Tretiakov, Oleg A.
    Liu, Xiaoxi
    Zhou, Yan
    [J]. PHYSICAL REVIEW B, 2018, 98 (13)
  • [7] Skyrmion based majority logic gate by voltage controlled magnetic anisotropy in a nanomagnetic device
    Paikaray, Bibekananda
    Kuchibhotla, Mahathi
    Haldar, Arabinda
    Murapaka, Chandrasekhar
    [J]. NANOTECHNOLOGY, 2023, 34 (22)
  • [8] Scaling of voltage controlled magnetic anisotropy based skyrmion memory and its neuromorphic application
    Akanda, Md Rakibul Karim
    [J]. NANO EXPRESS, 2022, 3 (02):
  • [9] Skyrmion Motion in Ferrimagnets Driven by Magnetic Anisotropy Gradient
    Xu, Huan
    Yang, Qianqian
    Liu, Yang
    Tian, Guo
    Qiu, Lei
    Qin, Minghui
    Hou, Zhipeng
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (05):
  • [10] Voltage-controlled magnetic anisotropy gradient-driven skyrmion-based half-adder and full-adder
    Sara, Sarwath
    Murapaka, Chandrasekhar
    Haldar, Arabinda
    [J]. NANOSCALE, 2024, 16 (04) : 1843 - 1852