Automated Fluorescence Lifetime Imaging High-Content Analysis of Forster Resonance Energy Transfer between Endogenously Labeled Kinetochore Proteins in Live Budding Yeast Cells

被引:7
|
作者
Guo, Wenjun [1 ,2 ]
Kumar, Sunil [1 ,2 ]
Gorlitz, Frederik [1 ]
Garcia, Edwin [1 ]
Alexandrov, Yuriy [1 ,2 ]
Munro, Ian [1 ]
Kelly, Douglas J. [1 ,3 ]
Warren, Sean [4 ]
Thorpe, Peter [2 ,5 ]
Dunsby, Christopher [1 ,2 ,6 ]
French, Paul [1 ,2 ]
机构
[1] Imperial Coll London, Dept Phys, Photon Grp, South Kensignton Campus, London SW7 2AZ, England
[2] Francis Crick Inst, London, England
[3] RIKEN Ctr Biodynam Syst Res, Kobe, Hyogo, Japan
[4] Univ New South Wales, Garvan Inst Med Res, Sydney, NSW, Australia
[5] Queen Mary Univ London, London, England
[6] Imperial Coll London, Ctr Pathol, London, England
来源
SLAS TECHNOLOGY | 2019年 / 24卷 / 03期
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
fluorescence lifetime imaging; high-content analysis; budding yeast; kinetochore protein interactions; FRET; MICROTUBULE ATTACHMENT; NDC80; COMPLEX; LIVING CELLS; PLATE READER; FRET; FLIM; MICROSCOPY; ARCHITECTURE; REVEALS; IDENTIFICATION;
D O I
10.1177/2472630318819240
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe an open-source automated multiwell plate fluorescence lifetime imaging (FLIM) methodology to read out Forster resonance energy transfer (FRET) between fluorescent proteins (FPs) labeling endogenous kinetochore proteins (KPs) in live budding yeast cells. The low copy number of many KPs and their small spatial extent present significant challenges for the quantification of donor fluorescence lifetime in the presence of significant cellular autofluorescence and photobleaching. Automated FLIM data acquisition was controlled by mu Manager and incorporated wide-field time-gated imaging with optical sectioning to reduce background fluorescence. For data analysis, we used custom MATLAB-based software tools to perform kinetochore foci segmentation and local cellular background subtraction and fitted the fluorescence lifetime data using the open-source FLIMfit software. We validated the methodology using endogenous KPs labeled with mTurquoise2 FP and/or yellow FP and measured the donor fluorescence lifetimes for foci comprising 32 kinetochores with KP copy numbers as low as similar to 2 per kinetochore under an average labeling efficiency of 50%. We observed changes of median donor lifetime >= 250 ps for KPs known to form dimers. Thus, this FLIM high-content analysis platform enables the screening of relatively low-copy-number endogenous protein-protein interactions at spatially confined macromolecular complexes.
引用
收藏
页码:308 / 320
页数:13
相关论文
共 15 条
  • [1] Automated multiwell fluorescence lifetime imaging for Forster resonance energy transfer assays and high content analysis
    Kelly, Douglas J.
    Warren, Sean C.
    Alibhai, Dominic
    Kumar, Sunil
    Alexandrov, Yuriy
    Munro, Ian
    Margineanu, Anca
    McCormack, Jessica
    Welsh, Natalie J.
    Serwa, Remigiusz A.
    Thinon, Emmanuelle
    Kongsema, Mesayamas
    McGinty, James
    Talbot, Clifford
    Murray, Edward J.
    Stuhmeier, Frank
    Neil, Mark A. A.
    Tate, Edward W.
    Braga, Vania M. M.
    Lam, Eric W. -F.
    Dunsby, Christopher
    French, Paul M. W.
    ANALYTICAL METHODS, 2015, 7 (10) : 4071 - 4089
  • [2] Global analysis of Forster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence
    Laptenok, Sergey P.
    Borst, Jan Willem
    Mullen, Katharine M.
    van Stokkum, Ivo H. M.
    Visser, Antonie J. W. G.
    van Amerongen, Herbert
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (27) : 7593 - 7602
  • [3] Physiological fluorescence lifetime imaging microscopy improves Forster resonance energy transfer detection in living cells
    Chang, Ching-Wei
    Wu, Mei
    Merajver, Sofia D.
    Mycek, Mary-Ann
    JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (06)
  • [4] Imaging fluorescence resonance energy transfer between two green fluorescent proteins in living yeast
    Sagot, I
    Bonneu, M
    Balguerie, A
    Aigle, M
    FEBS LETTERS, 1999, 447 (01): : 53 - 57
  • [5] Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Forster resonance energy transfer microscopy
    Jyothikumar, Vinod
    Sun, Yuansheng
    Periasamy, Ammasi
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (06)
  • [6] Live Cell Imaging by Forster Resonance Energy Transfer Fluorescence to Study Trafficking of PLGA Nanoparticles and the Release of a Loaded Peptide in Dendritic Cells
    Liu, Mengshan
    Lau, Chun Yin Jerry
    Cabello, Irene Trillo
    Garssen, Johan
    Willemsen, Linette E. M.
    Hennink, Wim E.
    van Nostrum, Cornelus F.
    PHARMACEUTICALS, 2023, 16 (06)
  • [7] Three-color confocal Forster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells
    Wallrabe, Horst
    Sun, Yuansheng
    Fang, Xiaolan
    Periasamy, Ammasi
    Bloom, George S.
    CYTOMETRY PART A, 2015, 87A (06) : 580 - 588
  • [8] Fluorescence Lifetime Super-Resolution Imaging Unveil the Dynamic Relationship between Mitochondrial Membrane Potential and Cristae Structure Using the Forster Resonance Energy Transfer Strategy
    Peng, Fei
    Ai, Xiangnan
    Sun, Jing
    Ge, Xichuan
    Li, Meiqi
    Xi, Peng
    Gao, Baoxiang
    ANALYTICAL CHEMISTRY, 2024, : 11052 - 11060
  • [9] Quantifying nuclear wide chromatin compaction by phasor analysis of histone Forster resonance energy transfer (FRET) in frequency domain fluorescence lifetime imaging microscopy (FLIM) data
    Liang, Zhen
    Lou, Jieqiong
    Scipioni, Lorenzo
    Gratton, Enrico
    Hinde, Elizabeth
    DATA IN BRIEF, 2020, 30
  • [10] Interaction of Proteins Associated with the Magnetosome Assembly in Magnetotactic Bacteria As Revealed by Two-Hybrid Two-Photon Excitation Fluorescence Lifetime Imaging Microscopy Forster Resonance Energy Transfer
    Carillo, Maria Antonietta
    Bennet, Mathieu
    Faivre, Damien
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (47): : 14642 - 14648