Object Tracking by Combining Tracking-by-Detection and Marginal Particle Filter

被引:0
|
作者
Maras, Bahri [1 ]
Arica, Nafiz [2 ]
Ertuzun, Aysin Baytan [1 ]
机构
[1] Bogazici Univ, Elekt & Elekt Muhendisligi Bolumu, Istanbul, Turkey
[2] Bahcesehir Univ, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey
关键词
Object Tracking; Circulant Matrix Theory; Marginal Particle Filter; Tracking-by-Detection;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new algorithm based on tracking-by-detection approach for tracking of the objects having non-linear dynamic motion. For this purpose, the tracking-by-detection method depending on the Gauss kernel using the circulant matrix theory and the Fourier transform is employed together with the marginal particle filter method. Marginal particle filter uses the scores derived from the Gauss kernel at the measurement update phase of the filter to weight the particles propagated around the target that has been tracked. While updating the state variables by marginal particle filter, the object coordinates, the correction values belonging to these coordinates and the dimensions of the image window surrounding the object is estimated. The proposed method is tested on the video sequences which include the object having a high non-linear motion, and it was observed that marginal particle filter enhanced the performance of the track-by-detection method in an important scale.
引用
收藏
页码:1029 / 1032
页数:4
相关论文
共 50 条
  • [1] Robust Tracking-by-Detection using a Detector Confidence Particle Filter
    Breitenstein, Michael D.
    Reichlin, Fabian
    Leibe, Bastian
    Koller-Meier, Esther
    Van Gool, Luc
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1515 - 1522
  • [2] Online Multi-camera Tracking-by-detection Approach with Particle Filter
    Zhang, Jiexin
    Xiong, Huilin
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, AND SYSTEMS (ICCCS), 2015, : 150 - 153
  • [3] Tracking-by-detection of multiple persons by a resample-move particle filter
    Zuriarrain, Iker
    Mekonnen, Alhayat Ali
    Lerasle, Frederic
    Arana, Nestor
    [J]. MACHINE VISION AND APPLICATIONS, 2013, 24 (08) : 1751 - 1765
  • [4] Tracking-by-detection of multiple persons by a resample-move particle filter
    Iker Zuriarrain
    Alhayat Ali Mekonnen
    Frédéric Lerasle
    Nestor Arana
    [J]. Machine Vision and Applications, 2013, 24 : 1751 - 1765
  • [5] Efficient Online Tracking-by-Detection With Kalman Filter
    Chen, Siyuan
    Shao, Chenhui
    [J]. IEEE ACCESS, 2021, 9 : 147570 - 147578
  • [6] Object Detection and Tracking in Video using particle filter
    Kumar, T. Senthil
    Sivanandam, S. N.
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION & NETWORKING TECHNOLOGIES (ICCCNT), 2012,
  • [7] Moving Object Detection and Tracking using Particle Filter
    Ali, M. M. Naushad
    Abdullah-Al-Wadud, M.
    Lee, Seok-Lyong
    [J]. MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 1200 - 1204
  • [8] New technique for online object tracking-by-detection in video
    Azab, Maha M.
    Shedeed, Howida A.
    Hussein, Ashraf S.
    [J]. IET IMAGE PROCESSING, 2014, 8 (12) : 794 - 803
  • [9] Online Multi-Person Tracking-by-Detection Method Using ACF and Particle Filter
    Kokul, T.
    Ramanan, A.
    Pinidiyaarachchi, U. A. J.
    [J]. 2015 IEEE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INFORMATION SYSTEMS (ICICIS), 2015, : 529 - 536
  • [10] Object Detection and Tracking Using Sensor Fusion and Particle Filter
    Pelenk, Berk
    Acarman, Tankut
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2013), 2013, : 210 - 215