Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

被引:32
|
作者
Neogi, S. K. [1 ]
Karmakar, R. [1 ]
Misra, A. K. [2 ]
Banerjee, A. [1 ,3 ]
Das, D. [2 ]
Bandyopadhyay, S. [1 ,3 ]
机构
[1] Univ Calcutta, Dept Phys, Kolkata 700009, India
[2] UGC DAE Consortium Sci Res, Kolkata 700064, India
[3] Univ Calcutta, CRNN, Kolkata 700098, India
关键词
Mn doped ZnO; Impurity phase; Antiferromagnetism; Defects; MAGNETIC-PROPERTIES; THIN-FILMS; FERROMAGNETISM; CO; DEFECTS; ABSENCE;
D O I
10.1016/j.jmmm.2013.07.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components tau(1) and tau(2) are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 137
页数:8
相关论文
共 50 条
  • [1] Physical properties of ZnO nanoparticles doped with Mn and Fe
    Moussa, D.
    Bakeer, D. El-Said
    Awad, R.
    Abdel-Gaber, A. M.
    FRONTIERS IN THEORETICAL AND APPLIED PHYSICS/UAE 2017 (FTAPS 2017), 2017, 869
  • [2] Role of Milling Time for Ferromagnetic Mn Doped ZnO Samples
    Chattopadhyay, S.
    Karmakar, R.
    Neogi, S. K.
    Banerjee, A.
    Bandyopadhyay, S.
    Mukadam, M. D.
    Yusuf, S. M.
    SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 1195 - +
  • [3] Effect of impurity ions configurations on the magnetic properties of Mn-doped ZnO
    Gao, Hui-Xia
    Xia, Jian-Bai
    PHYSICA B-CONDENSED MATTER, 2012, 407 (05) : 883 - 887
  • [4] Structural, optical, and magnetic properties of Mn-doped ZnO samples
    Ahmed, S. A.
    RESULTS IN PHYSICS, 2017, 7 : 604 - 610
  • [5] Magnetic properties of Mn doped ZnO: the role of synthesis route
    R. Karmakar
    S. K. Neogi
    N. Midya
    A. Banerjee
    S. Bandyopadhyay
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 6371 - 6381
  • [6] Magnetic properties of Mn doped ZnO: the role of synthesis route
    Karmakar, R.
    Neogi, S. K.
    Midya, N.
    Banerjee, A.
    Bandyopadhyay, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (06) : 6371 - 6381
  • [7] Influence of the impurity potential on the phase separation in doped antiferromagnetic semiconductors
    Nagaev, EL
    PHYSICS LETTERS A, 2000, 267 (5-6) : 448 - 455
  • [8] Ferromagnetism in Mn-doped ZnO due to impurity bands
    Nielsen, KW
    Philipp, JB
    Opel, M
    Erb, A
    Simon, J
    Alff, L
    Gross, R
    SUPERLATTICES AND MICROSTRUCTURES, 2005, 37 (05) : 327 - 332
  • [9] Magnetism in Mn-doped ZnO bulk samples
    Chen, W
    Zhao, LF
    Wang, YQ
    Miao, JH
    Liu, S
    Xia, ZC
    Yuan, SL
    SOLID STATE COMMUNICATIONS, 2005, 134 (12) : 827 - 830
  • [10] Synthesis and Physical Properties of Mn Doped ZnO Dilute Magnetic Semiconductor Nanostructures
    Javed Iqbal
    Xiaofang Liu
    Abdul Majid
    Ronghai Yu
    Journal of Superconductivity and Novel Magnetism, 2011, 24 : 699 - 704