Stray-field imaging of magnetic vortices with a single diamond spin

被引:127
|
作者
Rondin, L. [1 ,2 ]
Tetienne, J-P. [1 ,2 ,3 ]
Rohart, S. [4 ]
Thiaville, A. [4 ]
Hingant, T. [3 ]
Spinicelli, P. [1 ,2 ]
Roch, J-F. [3 ]
Jacques, V. [1 ,2 ,3 ]
机构
[1] Ecole Normale Super, Lab Photon Quant & Mol, F-94235 Cachan, France
[2] CNRS, UMR 8537, F-94235 Cachan, France
[3] Univ Paris 11, CNRS, ENS Cachan, Aime Cotton Lab, F-91405 Orsay, France
[4] Univ Paris 11, CNRS, Phys Solides Lab, UMR 8502, F-91405 Orsay, France
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
FORCE MICROSCOPY; THIN-FILM; CORE; DRIVEN; RESOLUTION; PERMALLOY; DYNAMICS; CENTERS;
D O I
10.1038/ncomms3279
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometre scale spatial resolution remains an outstanding challenge. Recently, a technique has emerged that employs a single nitrogen-vacancy defect in diamond as an atomic-size magnetometer, which promises significant advances. However, the effectiveness of the technique when applied to magnetic nanostructures remains to be demonstrated. Here we use a scanning nitrogen-vacancy magnetometer to image a magnetic vortex, which is one of the most iconic objects of nanomagnetism, owing to the small size (similar to 10 nm) of the vortex core. We report three-dimensional, vectorial and quantitative measurements of the stray magnetic field emitted by a vortex in a ferromagnetic square dot, including the detection of the vortex core. We find excellent agreement with micromagnetic simulations, both for regular vortex structures and for higher-order magnetization states. These experiments establish scanning nitrogen-vacancy magnetometry as a practical and unique tool for fundamental studies in nanomagnetism.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Stray-field imaging of magnetic vortices with a single diamond spin
    L. Rondin
    J. -P. Tetienne
    S. Rohart
    A. Thiaville
    T. Hingant
    P. Spinicelli
    J. -F. Roch
    V. Jacques
    Nature Communications, 4
  • [2] The application of spin echoes to stray-field imaging
    Benson, TB
    McDonald, PJ
    JOURNAL OF MAGNETIC RESONANCE SERIES B, 1995, 109 (03): : 314 - 317
  • [3] Stray-field magnetic resonance imaging of solid materials
    Lockheed Palo Alto Research Lab, Palo Alto, United States
    Solid State Nucl Magn Reson, 4 ([d]333-345):
  • [4] Stray-field magnetic resonance imaging of solid materials
    Iwamiya, JH
    Sinton, SW
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 1996, 6 (04) : 333 - 345
  • [5] Stray-field nuclear magnetic resonance imaging in microgravity conditions
    Garrido, Leoncio
    Sampayo, Jose
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (05)
  • [6] Stray-field nuclear magnetic resonance imaging in microgravity conditions
    Garrido, Leoncio
    Sampayo, José
    Journal of Applied Physics, 2008, 103 (05):
  • [7] Stray-field imaging of quadrupolar nuclei of half integer spin in solids
    Bodart, P
    Nunes, T
    Randall, EW
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 1997, 8 (04) : 257 - 263
  • [8] STRAY-FIELD IMAGING (STRAFI) OF TEETH
    BAUMANN, MA
    DOLL, GM
    ZICK, K
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTICS, 1993, 75 (04): : 517 - 522
  • [9] Micrometer scale resolution of materials by stray-field Magnetic Resonance Imaging
    Van Landeghem, Maxime
    Bresson, Bruno
    Bluemich, Bernhard
    de Lacaillerie, Jean-Baptiste d'Espinose
    JOURNAL OF MAGNETIC RESONANCE, 2011, 211 (01) : 60 - 66
  • [10] Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal
    Wyss, Marcus
    Gliga, Sebastian
    Vasyukov, Denis
    Ceccarelli, Lorenzo
    Romagnoli, Giulio
    Cui, Jizhai
    Kleibert, Armin
    Stamps, Robert L.
    Poggio, Martino
    ACS NANO, 2019, 13 (12) : 13910 - 13916