Nanosecond X-ray diffraction of shock-compressed superionic water ice

被引:238
|
作者
Millot, Marius [1 ]
Coppari, Federica [1 ]
Rygg, J. Ryan [1 ,2 ,3 ]
Barrios, Antonio Correa [1 ]
Hamel, Sebastien [1 ]
Swift, Damian C. [1 ]
Eggert, Jon H. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
关键词
LIQUID; PHASE;
D O I
10.1038/s41586-019-1114-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since Bridgman's discovery of five solid water (H2O) ice phases(1) in 1912, studies on the extraordinary polymorphism of H2O have documented more than seventeen crystalline and several amorphous ice structures(2,3), as well as rich metastability and kinetic effects(4,5). This unique behaviour is due in part to the geometrical frustration of the weak intermolecular hydrogen bonds and the sizeable quantum motion of the light hydrogen ions (protons). Particularly intriguing is the prediction that H2O becomes superionic(6-12)-with liquid-like protons diffusing through the solid lattice of oxygen- when subjected to extreme pressures exceeding 100 gigapascals and high temperatures above 2,000 kelvin. Numerical simulations suggest that the characteristic diffusion of the protons through the empty sites of the oxygen solid lattice (1) gives rise to a surprisingly high ionic conductivity above 100 Siemens per centimetre, that is, almost as high as typical metallic (electronic) conductivity, (2) greatly increases the ice melting temperature(7-13) to several thousand kelvin, and (3) favours new ice structures with a close-packed oxygen lattice(13-15). Because confining such hot and dense H2O in the laboratory is extremely challenging, experimental data are scarce. Recent optical measurements along the Hugoniot curve (locus of shock states) of water ice VII showed evidence of superionic conduction and thermodynamic signatures for melting(16), but did not confirm the microscopic structure of superionic ice. Here we use laser-driven shockwaves to simultaneously compress and heat liquid water samples to 100-400 gigapascals and 2,000-3,000 kelvin. In situ X-ray diffraction measurements show that under these conditions, water solidifies within a few nanoseconds into nanometre-sized ice grains that exhibit unambiguous evidence for the crystalline oxygen lattice of superionic water ice. The X-ray diffraction data also allow us to document the compressibility of ice at these extreme conditions and a temperature- and pressure induced phase transformation from a body-centred-cubic ice phase (probably ice X) to a novel face-centred-cubic, superionic ice phase, which we name ice XVIII2,17.
引用
收藏
页码:251 / 255
页数:5
相关论文
共 50 条
  • [1] Nanosecond X-ray diffraction of shock-compressed superionic water ice
    Marius Millot
    Federica Coppari
    J. Ryan Rygg
    Antonio Correa Barrios
    Sebastien Hamel
    Damian C. Swift
    Jon H. Eggert
    Nature, 2019, 569 : 251 - 255
  • [2] In situ X-Ray Diffraction of Shock-Compressed Fused Silica
    Tracy, Sally June
    Turneaure, Stefan J.
    Duffy, Thomas S.
    PHYSICAL REVIEW LETTERS, 2018, 120 (13)
  • [3] Pulse X-ray diffraction study of shock-compressed NaCl
    Zaretsky, E
    JOURNAL DE PHYSIQUE IV, 1997, 7 (C3): : 329 - 334
  • [4] Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction
    Gorman, M. G.
    Briggs, R.
    McBride, E. E.
    Higginbotham, A.
    Arnold, B.
    Eggert, J. H.
    Fratanduono, D. E.
    Galtier, E.
    Lazicki, A. E.
    Lee, H. J.
    Liermann, H. P.
    Nagler, B.
    Rothkirch, A.
    Smith, R. F.
    Swift, D. C.
    Collins, G. W.
    Wark, J. S.
    McMahon, M. I.
    PHYSICAL REVIEW LETTERS, 2015, 115 (09)
  • [5] Direct observation of the α-ε transition in shock-compressed iron via nanosecond x-ray diffraction -: art. no. 075502
    Kalantar, DH
    Belak, JF
    Collins, GW
    Colvin, JD
    Davies, HM
    Eggert, JH
    Germann, TC
    Hawreliak, J
    Holian, BL
    Kadau, K
    Lomdahl, PS
    Lorenzana, HE
    Meyers, MA
    Rosolankova, K
    Schneider, MS
    Sheppard, J
    Stölken, JS
    Wark, JS
    PHYSICAL REVIEW LETTERS, 2005, 95 (07)
  • [6] Ultrafast time-resolved X-ray diffraction of shock-compressed condensed matter
    Hironaka, Y
    Nakamura, KG
    Kondo, K
    NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY, 2003, 13 (03): : 161 - 170
  • [7] X-ray diffraction technique with VISAR support for study of shock-compressed single crystals
    Zaretsky, E
    SHOCK COMPRESSION OF CONDENSED MATTER - 1997, 1998, 429 : 883 - 886
  • [8] Analysis of the x-ray diffraction signal for the α-ε transition in shock-compressed iron:: Simulation and experiment
    Hawreliak, J.
    Colvin, J. D.
    Eggert, J. H.
    Kalantar, D. H.
    Lorenzana, H. E.
    Stolken, J. S.
    Davies, H. M.
    Germann, T. C.
    Holian, B. L.
    Kadau, K.
    Lomdahl, P. S.
    Higginbotham, A.
    Rosolankova, K.
    Sheppard, J.
    Wark, J. S.
    PHYSICAL REVIEW B, 2006, 74 (18)
  • [9] DEVICE FOR INVESTIGATING X-RAY-DIFFRACTION ON SHOCK-COMPRESSED MATERIAL
    ZARETSKII, EB
    KANEL, GI
    MOGILEVSKII, PA
    FORTOV, VE
    HIGH TEMPERATURE, 1991, 29 (05) : 805 - 811
  • [10] X-ray diffraction data from shock-compressed copper: Some consequences of metallurgical texture
    Foster, J. M.
    Avraam, P. W.
    Floyd, E. K. R.
    Comley, A. J.
    Rothman, S. D.
    McGonegle, D. R.
    Graham, P.
    Peacock, L. J.
    Penman, R.
    Luis, J. J. D.
    Poulter, C. P.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (24)