An inverse problem of scattering theory for the perturbed Stark operator on the semiaxis

被引:2
|
作者
Ahmedova, Aynur R. [1 ]
机构
[1] Ganja State Univ, Dept Math Anal, AZ-2000 Ganja, Azerbaijan
关键词
Stark operator; scattering theory; inverse problem; STURM;
D O I
10.1515/gmj-2015-0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we consider the inverse problem for the perturbed Stark operator. We obtain necessary and sufficient conditions on the set of values, which could serve as scattering data for the considered operator, and we prove their sufficiency.
引用
收藏
页码:295 / 304
页数:10
相关论文
共 50 条
  • [1] One remark on the inverse scattering problem for the perturbed Stark operator on the semiaxis
    Khanmamedov, Agil K.
    Abbasova, Khatira E.
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) : 225 - 228
  • [2] Inverse Spectral Problem for the One-Dimensional Stark Operator on the Semiaxis
    A. R. Latifova
    A. Kh. Khanmamedov
    Ukrainian Mathematical Journal, 2020, 72 : 568 - 584
  • [3] On the Inverse Spectral Problem for the One-dimensional Stark Operator on the Semiaxis
    Khanmamedov, A. Kh.
    Huseynova, Y. I.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (01): : 122 - 132
  • [4] Inverse Spectral Problem for the One-Dimensional Stark Operator on the Semiaxis
    Latifova, A. R.
    Khanmamedov, A. Kh.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (04) : 568 - 584
  • [5] INVERSE SCATTERING PROBLEM FOR A PERTURBED HILLS OPERATOR
    FIRSOVA, NE
    MATHEMATICAL NOTES, 1975, 18 (5-6) : 1085 - 1091
  • [6] TO THE INVERSE SPECTRAL PROBLEM FOR A PERTURBED OSCILLATOR ON THE SEMIAXIS
    Khanmamedov, Agil Kh.
    Muradov, Mammad F.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (01): : 104 - 112
  • [7] AN INVERSE PROBLEM OF THE THEORY OF SCATTERING ON SEMIAXIS FOR A SYSTEM OF DIFFERENCE-EQUATIONS
    KHASANOV, AB
    DOKLADY AKADEMII NAUK SSSR, 1984, 278 (06): : 1316 - 1319
  • [8] INVERSE PROBLEM OF SCATTERING FOR PERTURBED FINITE ZONAL STURM-LIOUVILLE OPERATOR
    KHASANOV, AB
    DOKLADY AKADEMII NAUK SSSR, 1991, 318 (05): : 1095 - 1098
  • [9] On Spectral Properties of the One-Dimensional Stark Operator on the Semiaxis
    M. G. Makhmudova
    A. Kh. Khanmamedov
    Ukrainian Mathematical Journal, 2020, 71 : 1813 - 1819
  • [10] On Spectral Properties of the One-Dimensional Stark Operator on the Semiaxis
    Makhmudova, M. G.
    Khanmamedov, A. Kh
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 71 (11) : 1813 - 1819