Discovery of YbNiSb-Based Half-Heusler Alloys as Promising Thermoelectric Materials

被引:1
|
作者
Huang, Jiamian [1 ]
Liu, Rongtao [1 ]
Ma, Quanying [1 ]
Jiang, Zuojian [1 ]
Jiang, Yibin [1 ]
Li, Yu [2 ]
Wang, Chenyang [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
composition crystal YbNiSb; half-Heusler alloys; thermoelectric materials; lattice thermal conductivity; carrier mobility; LATTICE THERMAL-CONDUCTIVITY; TOTAL-ENERGY CALCULATIONS; TRANSPORT-PROPERTIES; CARRIER CONCENTRATION; ELECTRONIC-STRUCTURE; RECENT PROGRESS; NI; PERFORMANCE; ORDER; YB;
D O I
10.1021/acsaem.2c02269
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Half-Heusler materials are promising candidates for high-temperature power generation and have relatively high lattice thermal conductivity compared to other thermoelectric material systems. In this work, we report novel p-type YbNiSb-based half-Heusler alloys with a low lattice thermal conductivity (similar to 3.6 W m-1 K-1 at 340 K) that resulted from their large Gru''neisen parameter, low sound speed, and low Debye temperature. All YbNiSb-based alloys exhibit a high carrier mobility of 30-50 cm2 V-1 s-1 at room temperature because of their relatively small effective mass. Importantly, the structural analysis reveals that Yb-rich Yb1.3Ni0.9Sb0.8 exhibits Yb/Ni and Yb/Sb substitution, indicating a wide homogeneity region of the YbNiSb phase experimentally. The adjustable Yb and Ni contents in YbNiSb-based alloys can modify the band structure around the Fermi level and significantly affect electrical transport properties. Additionally, by doping Ta at Yb sites, the carrier concentration and lattice thermal conductivity of these alloys can be manipulated. Consequently, a peak zT value of 0.45 at 823 K was achieved for Yb0.95Ta0.05NiSb. Our work demonstrates that YbNiSb-based alloys are promising p-type thermoelectric materials and suggests the possibility of exploring novel thermoelectric alloys in rare-earth nickel pnictides via tuning their composition and crystal structure.
引用
收藏
页码:12630 / 12639
页数:10
相关论文
共 50 条
  • [1] Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials
    Xue Jia
    Yanshuai Deng
    Xin Bao
    Honghao Yao
    Shan Li
    Zhou Li
    Chen Chen
    Xinyu Wang
    Jun Mao
    Feng Cao
    Jiehe Sui
    Junwei Wu
    Cuiping Wang
    Qian Zhang
    Xingjun Liu
    npj Computational Materials, 8
  • [2] Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials
    Jia, Xue
    Deng, Yanshuai
    Bao, Xin
    Yao, Honghao
    Li, Shan
    Li, Zhou
    Chen, Chen
    Wang, Xinyu
    Mao, Jun
    Cao, Feng
    Sui, Jiehe
    Wu, Junwei
    Wang, Cuiping
    Zhang, Qian
    Liu, Xingjun
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [3] Rhodium-based half-Heusler alloys as thermoelectric materials
    Jaishi, Dhurba R.
    Bati, Sujit
    Sharma, Nileema
    Karki, Bishnu
    Belbase, Bishnu P.
    Ghimire, Madhav Prasad
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (33) : 19844 - 19852
  • [4] Half-Heusler thermoelectric materials
    Xia, Kaiyang
    Hu, Chaoliang
    Fu, Chenguang
    Zhao, Xinbing
    Zhu, Tiejun
    APPLIED PHYSICS LETTERS, 2021, 118 (14)
  • [5] Thermoelectric properties of half-Heusler alloys
    Chen, Rongchun
    Kang, Huijun
    Min, Ruonan
    Chen, Zongning
    Guo, Enyu
    Yang, Xiong
    Wang, Tongmin
    INTERNATIONAL MATERIALS REVIEWS, 2024, 69 (02) : 83 - 106
  • [6] Electronic and thermoelectric properties of half-Heusler alloys
    Poon, SJ
    RECENT TRENDS IN THERMOELECTRIC MATERIALS RESEARCH II, 2001, 70 : 37 - 75
  • [7] Thermoelectric properties of NbCoSn-based half-heusler alloys
    Ono, Yasuhiro
    Inayama, Shingo
    Adachi, Hideaki
    Kajitani, Tsuyoshi
    ICT'06: XXV INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS, 2006, : 124 - +
  • [8] Half-Heusler thermoelectric materials: NMR studies
    Tian, Yefan
    Ghassemi, Nader
    Ren, Wuyang
    Zhu, Hangtian
    Li, Shan
    Zhang, Qian
    Wang, Zhiming
    Ren, Zhifeng
    Ross, Joseph H., Jr.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (05)
  • [9] New thermoelectric materials with half-Heusler structure
    Huang, XY
    Xu, Z
    Chen, LD
    JOURNAL OF INORGANIC MATERIALS, 2004, 19 (01) : 25 - 30
  • [10] Recent progress in half-Heusler thermoelectric materials
    Huang, Lihong
    Zhang, Qinyong
    Yuan, Bo
    Lai, Xiang
    Yan, Xiao
    Ren, Zhifeng
    MATERIALS RESEARCH BULLETIN, 2016, 76 : 107 - 112