A Gate-Width Scalable Method of Parasitic Parameter Determination for Distributed HEMT Small-Signal Equivalent Circuit

被引:28
|
作者
Tung The-Lam Nguyen [1 ]
Kim, Sam-Dong [1 ]
机构
[1] Dongguk Univ, Div Elect & Elect Engn, Seoul 100715, South Korea
基金
新加坡国家研究基金会;
关键词
Device modeling; high electron-mobility transistors (HEMTs); microwave device modeling; microwave monolithic integrated circuit (MMIC); parameter extraction; MODELING APPROACH;
D O I
10.1109/TMTT.2013.2279360
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a gate-width scalable method for extracting the reliable parasitic elements of the 0.1-mu m GaAs metamorphic high electron-mobility transistors. This method utilizes the de-embedding scheme for coplanar waveguide (CPW) feeding structure by considering the distributed extrinsic parasitic elements in our small-signal model. The parasitic capacitances are determined based on estimation of the sub-model (the model after de-embedding the contribution of the CPW feeding structure). We perform the parameter extraction at four different gate widths of the devices to examine the scaling effect. The model shows the best S-parameter effective fitting error of 9.85% among four different extraction methods evaluated in this study over the entire gate-width variation and in a frequency range of 0.5-110 GHz.
引用
收藏
页码:3632 / 3638
页数:7
相关论文
共 50 条
  • [1] An efficient parameter extraction method for GaN HEMT small-signal equivalent circuit model
    Wen, Zhang
    Xu, Yuehang
    Wang, Changsi
    Zhao, Xiaodong
    Xu, Ruimin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2017, 30 (01)
  • [2] Scalable Small-Signal Modeling of AlGaN/GaN HEMT Based on Distributed Gate Resistance
    Hassan, Bilal
    Cutivet, Adrien
    Rodriguez, Christophe
    Cozette, Flavien
    Soltani, Ali
    Maher, Hassan
    Boone, Francois
    [J]. 2019 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS 2019), 2019,
  • [3] A scalable and multibias parameter extraction method for a small-signal GaN HEMT model
    Chen, Yongbo
    Xu, Yuehang
    Wang, Feng
    Wang, Changsi
    Wu, Qingzhi
    Qiao, Shiyang
    Yan, Bo
    Xu, Ruimin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2018, 31 (05)
  • [4] A novel approach for parameter determination of HBT small-signal equivalent circuit
    Chen, HY
    Chen, KM
    Huang, GW
    Chang, CY
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2005, E88C (06) : 1133 - 1141
  • [5] A distributed small signal equivalent circuit modeling method for InP HEMT
    Qi Jun-Jun
    Lyu Hong-Liang
    Cheng Lin
    Zhang Yu-Ming
    Zhang Yi-Men
    Zhao Feng-Guo
    Duan Lan-Yan
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2022, 41 (02) : 511 - 516
  • [6] Distributed Small-Signal Equivalent Circuit Model and Parameter Extraction for siGe HBT
    Sun, Yabin
    Liu, Ziyu
    Li, Xiaojin
    Shi, Yanling
    [J]. IEEE ACCESS, 2019, 7 : 5865 - 5873
  • [7] A robust parameter extraction method for HBT small-signal equivalent circuit
    Ho, Sung-Jin
    Choi, Min Ki
    van der Weide, Daniel W.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (08) : 1845 - 1848
  • [8] A comparative study on the accuracy of small-signal equivalent circuit modeling for large gate periphery GaN HEMT with different source to drain length and gate width
    Anand, Anupama
    Reeta
    Rawal, Dipendra Singh
    Narang, Rakhi
    Mishra, Meena
    Saxena, Manoj
    Gupta, Mridula
    [J]. MICROELECTRONICS JOURNAL, 2021, 118 (118)
  • [9] Scalable Distributed Small-Signal Millimeter-wave HEMT Model
    Hoque, M. E.
    Parker, Anthony E.
    Heimlich, Michael
    Tarazi, Jabra
    Mahon, Simon
    [J]. 2011 6TH EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE, 2011, : 374 - 377
  • [10] GaN HEMT Small-Signal Modelling: Neural Networks versus Equivalent Circuit
    Marinkovic, Z.
    Crupi, G.
    Caddemi, A.
    Markovic, V.
    [J]. 2017 IEEE 30TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL), 2017, : 153 - 156