A characterization of projective spaces by a set of planes

被引:0
|
作者
Kreuzer, A [1 ]
机构
[1] Univ Hamburg, Math Seminar, D-20146 Hamburg, Germany
关键词
projective spaces; embeddings; planes of linear spaces;
D O I
10.1023/A:1005196328723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note deals with the following question: How many planes of a linear space (P, L) must be known as projective planes to ensure that (P, L) is a projective space? The following answer is given: If for any subset M of a linear space (P, L) the restriction (M, L)(M)) is locally complete, and if for every plane E of (M, L(M)) the plane (E) over bar generated by E is a projective plane, then (P, L) is a projective space. Or more generally: If for any subset M of P the restriction (M, L(M)) is locally complete, and if for any two distinct coplanar lines G(1), G(2) is an element of L(M) the lines (G) over bar(1), (G) over bar(2) is an element of L generated by G(1), G(2) have a nonempty intersection and <(G(1) boolean OR G(2))over bar> satisfies the exchange condition, then (P, L) is a generalized projective space.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [1] A Characterization of Projective Spaces by a Set of Planes
    Alexander Kreuzer
    Geometriae Dedicata, 1999, 76 : 43 - 52
  • [2] Blocking set in projective planes
    Polverino, O
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A : 181 - 184
  • [3] Projective spaces and inversive planes
    Napolitano V.
    Olanda D.
    Ricerche di Matematica, 2014, 63 (Suppl 1) : 239 - 247
  • [4] LINEAR REPRESENTATIONS OF PROJECTIVE PLANES IN PROJECTIVE SPACES
    BRUCK, RH
    JOURNAL OF ALGEBRA, 1966, 4 (01) : 117 - &
  • [5] Finite affine planes in projective spaces
    Joseph A. Thas
    Hendrik Van Maldeghem
    Combinatorica, 2017, 37 : 283 - 311
  • [6] Linear spaces with many projective planes
    Freitag R.
    Kreuzer A.
    Journal of Geometry, 2004, 79 (1-2) : 67 - 74
  • [7] Finite affine planes in projective spaces
    Thas, Joseph A.
    Van Maldeghem, Hendrik
    COMBINATORICA, 2017, 37 (02) : 283 - 311
  • [8] On embeddings of the flag geometries of projective planes in finite projective spaces
    Thas, JA
    Van Maldeghem, H
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 17 (1-3) : 97 - 104
  • [9] On Embeddings of the Flag Geometries of Projective Planes in Finite Projective Spaces
    Joseph A. Thas
    Hendrik Van Maldeghem
    Designs, Codes and Cryptography, 1999, 17 : 97 - 104
  • [10] An Extremal Characterization of Projective Planes
    De Winter, Stefaan
    Lazebnik, Felix
    Verstraete, Jacques
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):