Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrodinger equation

被引:12
|
作者
Tay, Wei Choon [1 ]
Tan, Eng Leong [1 ]
机构
[1] Nanyang Technol Univ, Sch EEE, Singapore 639798, Singapore
关键词
Schrodinger equation; Alternating-direction-implicit (ADI); Finite-difference time-domain (FDTD) methods; Pentadiagonal; Tridiagonal; NUMERICAL-SOLUTION; INTEGRAL CONDITION; FDTD METHOD; SCHEMES; DIFFUSION; DEVICES;
D O I
10.1016/j.cpc.2014.03.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrodinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet's boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1886 / 1892
页数:7
相关论文
共 50 条
  • [1] An alternating-direction hybrid implicit-explicit finite-difference time-domain method for the Schrodinger equation
    Decleer, Pieter
    Van Londersele, Arne
    Rogier, Hendrik
    Vande Ginste, Dries
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 403
  • [2] INVESTIGATION OF THE ON-CHIP MISM INTERCONNECTS WITH THE ALTERNATING-DIRECTION-IMPLICIT FINITE-DIFFERENCE TIME-DOMAIN METHOD
    Yang, Bo
    Shao, Xi
    Goldsman, Neil
    Ramahi, Omar M.
    Guzdar, Parvez N.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2011, 53 (07) : 1582 - 1585
  • [3] Alternating direction implicit finite-difference time-domain method for plasmas
    Liu, SB
    Mo, JJ
    Yuan, NC
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 23 (05) : 363 - 366
  • [4] Simulation of Axon Activation by Electrical Stimulation-Applying Alternating-Direction-Implicit Finite-Difference Time-Domain Method
    Choi, Charles T. M.
    Sun, Shu-Hai
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 639 - 642
  • [5] New Alternating Direction Implicit Finite-Difference Time-Domain Method with Higher Efficiency
    Chen, Juan
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2012, 27 (11): : 903 - 907
  • [6] Genetic algorithm in reduction of numerical dispersion of 3-D alternating-direction-implicit finite-difference time-domain method
    Zhang, Yan
    Lue, Shan-Wei
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2007, 55 (05) : 966 - 973
  • [7] Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function
    Kim, E. -K.
    Ha, S. -G.
    Lee, J.
    Park, Y. B.
    Jung, K. -Y.
    [J]. OPTICS EXPRESS, 2015, 23 (02): : 873 - 881
  • [8] An alternating-direction hybrid implicit-explicit finite-difference time-domain method for the Schrödinger equation
    Decleer, Pieter
    Van Londersele, Arne
    Rogier, Hendrik
    Vande Ginste, Dries
    [J]. Journal of Computational and Applied Mathematics, 2022, 403
  • [9] Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method
    Singh, Gurpreet
    Tan, Eng Leong
    Chen, Zhi Ning
    [J]. OPTICS LETTERS, 2011, 36 (08) : 1494 - 1496
  • [10] Reduction of Numerical Dispersion of 3-D Higher Order Alternating-Direction-Implicit Finite-Difference Time-Domain Method With Artificial Anisotropy
    Zhang, Yan
    Lue, Shan-wei
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (10) : 2416 - 2428