Pan-Arctic modelling of net ecosystem exchange of CO2

被引:39
|
作者
Shaver, G. R. [1 ]
Rastetter, E. B. [1 ]
Salmon, V. [1 ,2 ]
Street, L. E. [1 ,3 ]
van de Weg, M. J. [1 ,4 ]
Rocha, A. [1 ,5 ]
van Wijk, M. T. [6 ,7 ]
Williams, M. [7 ]
机构
[1] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[2] Univ Florida, Dept Biol, Gainesville, FL USA
[3] Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England
[4] Vrije Univ Amsterdam, Amsterdam Global Change Inst, Amsterdam, Netherlands
[5] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA
[6] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland
[7] Univ Wageningen & Res Ctr, Wageningen, Netherlands
基金
美国国家科学基金会;
关键词
Arctic carbon cycling; net ecosystem exchange of carbon; tundra; carbon cycle modelling; pan-Arctic comparisons; LEAF-AREA INDEX; CARBON BALANCE; VEGETATION; PRODUCTIVITY; SENSITIVITY; NITROGEN; PLANTS; CYCLE; FLUX;
D O I
10.1098/rstb.2012.0485
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Interannual variability in net ecosystem CO2 exchange at the arctic treeline
    Lafleur, PM
    Griffis, TJ
    Rouse, WR
    [J]. ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2001, 33 (02) : 149 - 157
  • [2] Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes
    Emmerton, Craig A.
    St Louis, Vincent L.
    Humphreys, Elyn R.
    Gamon, John A.
    Barker, Joel D.
    Pastorello, Gilberto Z.
    [J]. GLOBAL CHANGE BIOLOGY, 2016, 22 (03) : 1185 - 1200
  • [3] Interannual Variability of Summer Net Ecosystem CO2 Exchange in High Arctic Tundra
    Braybrook, Christina A.
    Scott, Neal A.
    Treitz, Paul M.
    Humphreys, Elyn R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2021, 126 (08)
  • [4] Modelling the interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen
    Griffis, TJ
    Rouse, WR
    [J]. GLOBAL CHANGE BIOLOGY, 2001, 7 (05) : 511 - 530
  • [5] Net CO2 exchange of a subarctic mountain birch ecosystem
    M. Aurela
    J.-P. Tuovinen
    T. Laurila
    [J]. Theoretical and Applied Climatology, 2001, 70 : 135 - 148
  • [6] Net CO2 exchange of a subarctic mountain birch ecosystem
    Aurela, M
    Tuovinen, JP
    Laurila, T
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2001, 70 (1-4) : 135 - 148
  • [7] Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem
    Hymus, GJ
    Johnson, DP
    Dore, S
    Anderson, HP
    Hinkle, CR
    Drake, BG
    [J]. GLOBAL CHANGE BIOLOGY, 2003, 9 (12) : 1802 - 1812
  • [8] Pan-Arctic surface ozone: modelling vs. measurements
    Yang, Xin
    Blechschmidt, Anne-M
    Bognar, Kristof
    McClure-Begley, Audra
    Morris, Sara
    Petropavlovskikh, Irina
    Richter, Andreas
    Skov, Henrik
    Strong, Kimberly
    Tarasick, David W.
    Uttal, Taneil
    Vestenius, Mika
    Zhao, Xiaoyi
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (24) : 15937 - 15967
  • [9] Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002-2017
    Li Zhi-Long
    Mu Cui-Cui
    Chen Xu
    Wang Xing-Yu
    Dong Wen-Wen
    Jia Lin
    Mu Mei
    Streletskaya, Irina
    Grebenets, Valery
    Sokratov, Sergey
    Kizyakov, Alexander
    Wu Xiao-Dong
    [J]. ADVANCES IN CLIMATE CHANGE RESEARCH, 2021, 12 (04) : 475 - 481
  • [10] A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations
    Treat, Claire C.
    Natali, Susan M.
    Ernakovich, Jessica
    Iversen, Colleen M.
    Lupascu, Massimo
    McGuire, Anthony David
    Norby, Richard J.
    Chowdhury, Taniya Roy
    Richter, Andreas
    Santruckova, Hana
    Schaedel, Christina
    Schuur, Edward A. G.
    Sloan, Victoria L.
    Turetsky, Merritt R.
    Waldrop, Mark P.
    [J]. GLOBAL CHANGE BIOLOGY, 2015, 21 (07) : 2787 - 2803