Two approaches to determine the fraction (mu) of mitochondrial respiration sustained during illumination by measuring CO2 gas exchange are compared. In single leaves, the respiration rate in the light (`day respiration' rate R d) is determined as the ordinate of the intersection point of A-c i curves at various photon flux densities and compared with the CO2 evolution rate in darkness (`night respiration' rate R n). Alternatively, using leaves with varying values of CO2 compensation concentration (Gamma), intracellular resistance (r i) and R n, an average number for mu can be derived from the linear regression between Gamma and the product r i.R n. Both methods also result in a number c* for that intercellular CO2 concentration at which net CO2 uptake rate is equal to -R d. c* is an approximate value of the photocompensation point Gamma* (Gamma in the absence of mitochondrial respiration), which is related to the CO2/O-2 specificity factor of Rubisco S c/o. The presuppositions and limitations for application of both approaches are discussed. In leaves of Nicotiana tabacum, at 22 degreesC, single leaf measurements resulted in mean values of mu = 0.71 and c(*) = 34 mumol mol(-1). At the photosynthetically active photon flux density of 960 mumol quanta m(-2) s(-1), nearly the same numbers were derived from the linear relationship between Gamma and r i.R n. c* and R d determined by single leaf measurements varied between 31 and 41 mumol mol(-1) and between 0.37 and 1.22 mumol m(-2) s(-1), respectively. A highly significant negative correlation between c* and R-d was found. From the regression equation we obtained estimates for Gamma* (39 mumol mol(-1)), S c/o (96.5 mol mol(-1)) and the mesophyll CO2 transfer resistance (7.0 mol(-1) m(2) s).