A Heisenberg algebra bundle of a vector field in three-space and its Weyl quantization

被引:0
|
作者
Binz, E [1 ]
Pods, S [1 ]
机构
[1] Univ Mannheim, Lehrstuhl Math 1, D-63131 Mannheim, Germany
关键词
complex line bundles; Heisenberg algebras; Heisenberg groups; field quantization; Weyl quantization;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In these notes we associate a natural Heisenberg group bundle H-a with a singularity free smooth vector field X = (id,a) on a submanifold M in a Euclidean three-space. This bundle yields naturally an infinite dimensional Heisenberg group H-X(infinity). A representation of the C*-group algebra of H-X(infinity) is a quantization. It causes a natural Weyl-deformation quantization of X. The influence of the topological structure of M on this quantization is encoded in the Chem class of a canonical complex line bundle inside H-a.
引用
下载
收藏
页码:67 / +
页数:2
相关论文
共 41 条