Splitting properties of the reduction of semi-abelian varieties

被引:0
|
作者
Hertgen, Alan [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
关键词
Semi-abelian varieties; Neron models; group of components; tame ramification; Weil restrictions; Tate curves; Jacobian varieties; Swan conductor; WILD RAMIFICATION; NERON MODELS;
D O I
10.1142/S1793042116501359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a complete discrete valuation field. Let OK be its ring of integers. Let k be its residue field which we assume to be algebraically closed of characteristic exponent p >= 1. Let G/K be a semi-abelian variety. Let G/O-K be its Neron model. The special fiber G(k)/k is an extension of the identity component G(k)(0)/k by the group of components Phi(G). We say that G/K has split reduction if this extension is split. Whereas G/K has always split reduction if p = 1 we prove that it is no longer the case if p > 1 even if G/K is tamely ramified. If J/K is the Jacobian variety of a smooth proper and geometrically connected curve C/K of genus g, we prove that for any tamely ramified extension M/K of degree greater than a constant, depending on g only, J(M)/M has split reduction. This answers some questions of Liu and Lorenzini.
引用
收藏
页码:2241 / 2264
页数:24
相关论文
共 50 条
  • [1] Torsion subvarieties of semi-abelian varieties
    David, S
    Philippon, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (08): : 587 - 592
  • [2] Perverse sheaves on semi-abelian varieties
    Liu, Yongqiang
    Maxim, Laurentiu
    Wang, Botong
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [3] Diophantine approximation on semi-abelian varieties
    Rémond, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (02): : 191 - 212
  • [4] Small points on semi-abelian varieties
    Chambert-Loir, A
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06): : 789 - 821
  • [5] A REMARK ON THE DYNAMICS OF SEMI-ABELIAN VARIETIES
    Remond, Gael
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (02) : 397 - 406
  • [6] DIVISION POINTS ON SEMI-ABELIAN VARIETIES
    MCQUILLAN, M
    INVENTIONES MATHEMATICAE, 1995, 120 (01) : 143 - 159
  • [7] On holomorphic curves in semi-Abelian varieties
    Noguchi, J
    MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (04) : 713 - 721
  • [8] On holomorphic curves in semi-Abelian varieties
    Junjiro Noguchi
    Mathematische Zeitschrift, 1998, 228 : 713 - 721
  • [9] Perverse sheaves on semi-abelian varieties
    Yongqiang Liu
    Laurentiu Maxim
    Botong Wang
    Selecta Mathematica, 2021, 27
  • [10] Perverse sheaves on semi-abelian varieties—a survey of properties and applications
    Yongqiang Liu
    Laurentiu Maxim
    Botong Wang
    European Journal of Mathematics, 2020, 6 : 977 - 997