The sample ACF of a simple bilinear process

被引:19
|
作者
Basrak, B
Davis, RA [1 ]
Mikosch, T
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
关键词
sample autocorrelation; sample autocovariance; heavy tails; infinite variance; stable distribution; convergence of point processes; mixing condition; stochastic recurrence equation; bilinear process;
D O I
10.1016/S0304-4149(99)00013-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a simple bilinear process X-t = aX(t-1) + bX(t-1)Z(t-1) +Z(t), where (Z(t)) is a sequence of iid N(0, 1) random variables. It follows from a result by Kesten (1973, Acta Math. 131, 207-248) that X-t has a distribution with regularly varying tails of index alpha > 0 provided the equation E\a + bZ(1)\(u) = 1 has the solution u = alpha. We study the limit behaviour of the sample autocorrelations and autocovariances of this heavy-tailed non-linear process. Of particular interest is the case when alpha < 4. If alpha is an element of (0,2) we prove that the sample autocorrelations converge to non-degenerate limits. If alpha is an element of (2,4) we prove joint weak convergence of the sample autocorrelations and autocovariances to non-normal limits. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] A note on a simple Markov bilinear stochastic process
    Cline, DBH
    Pu, HMH
    STATISTICS & PROBABILITY LETTERS, 2002, 56 (03) : 283 - 288
  • [2] Evaluation of interposers in the ACF bonding process
    Ge, Jun
    Saarinen, Ilkka
    Savolainen, Petri
    56TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE 2006, VOL 1 AND 2, PROCEEDINGS, 2006, : 1499 - +
  • [3] ACF particle distribution in COG process
    Yen, Yee-Wen
    Lee, Chun-Yu
    MICROELECTRONICS RELIABILITY, 2011, 51 (03) : 676 - 684
  • [4] A SIMPLE BILINEAR OPTIMIZATION PROBLEM
    WITSENHAUSEN, HS
    SYSTEMS & CONTROL LETTERS, 1986, 8 (01) : 1 - 4
  • [5] Interval estimation for a simple bilinear model
    Feng, Huijun
    Peng, Liang
    Zhu, Fukang
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2152 - 2159
  • [6] ACF Code of Ethics-Review Process
    Worrell, E. Glen, Jr.
    JOURNAL OF FORESTRY, 2019, 117 (02) : 183 - 183
  • [7] Bootstrapping bilinear models of Simple Vehicles
    Censi, Andrea
    Murray, Richard M.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (08): : 1087 - 1113
  • [8] SIMPLE ALGORITHM TO PERFORM THE BILINEAR TRANSFORMATION
    POLICASTRO, M
    INTERNATIONAL JOURNAL OF CONTROL, 1979, 30 (04) : 713 - 715
  • [9] Finite Sample Identification of Bilinear Dynamical Systems
    Sattar, Yahya
    Oymak, Samet
    Ozay, Necmiye
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 6705 - 6711
  • [10] Sample-to-sample fluctuations of transport coefficients in the totally asymmetric simple exclusion process with quenched disorder
    Sakai, Issei
    Akimoto, Takuma
    PHYSICAL REVIEW E, 2023, 107 (05)