Excellent Lithium Metal Anode Performance via In Situ Interfacial Layer Induced by Li6.75La3Zr1.75Ta0.25O12@Amorphous Li3OCl Composite Solid Electrolyte

被引:5
|
作者
Tian, Yijun [1 ,2 ]
Ding, Fei [2 ]
Sang, Lin [2 ]
He, Yan-Bing [3 ]
Liu, Xingjiang [1 ,2 ]
Xu, Qiang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Inst Power Sources, Natl Key Lab Sci & Technol Power Sources, Tianjin 300384, Peoples R China
[3] Tsinghua Univ, Grad Sch Shenzhen, Engn Lab Next Generat Power & Energy Storage Batt, Shenzhen 518055, Peoples R China
来源
关键词
Lithium Metal Anode; Li6.75La3Zr1.75Ta0.25O12@Amorphous Li3OCl Composite Solid Electrolyte; Interfacial Layer; Li-S battery; INTERPHASE; DEPOSITION; SEPARATOR; FRAMEWORK;
D O I
10.20964/2019.05.67
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A LLZTO-2wt.% Li3OCl composite solid electrolyte (LC) layer was attached to the surface of a Li metal electrode through a glass-fiber-paper (GF)-supported method to form a stable in situ reaction interfacial layer between the Li metal anode and an organic liquid electrolyte in Li metal batteries. The Li metal anode modified by GF-LC showed excellent cycling stability in a Li metal symmetric battery (over 1100 h stable cycles at 1 mA cm(-2) / 1 mA h cm(-2) with less corrosion of Li metal anode) and Li-Cu battery (over 300 h cycles at 1 mA cm(-2) / 1 mA h cm(-2) with Coulombic efficiency of 99.0%). The superior stability and dendrite-free mechanism of the GF-LC-modified Li metal anode is related to the reduced direct contact area and less corrosive side reactions between the organic electrolyte and the Li metal anode. Based on the excellent stability of the GF-LC-modified Li metal anode, a Li-S battery was assembled to research the effect of the GF-LC modified Li metal anode on cycling stability. Compared with Li-S batteries modified by pristine and GF-modified Li metal anodes, the GF-LC-modified Li-S battery showed better cycling stability and longer cycling life.
引用
收藏
页码:4781 / 4798
页数:18
相关论文
共 50 条
  • [1] Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries
    Tian, Yijun
    Ding, Fei
    Zhong, Hai
    Liu, Cheng
    He, Yan-Bing
    Liu, Jiaquan
    Liu, Xingjiang
    Xu, Qiang
    ENERGY STORAGE MATERIALS, 2018, 14 : 49 - 57
  • [2] Ultrathin Li6.75La3Zr1.75Ta0.25O12-Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries
    Zegeye, Tilahun Awoke
    Su, Wei-Nien
    Fenta, Fekadu Wubatu
    Zeleke, Tamene Simachew
    Jiang, Shi-Kai
    Hwang, Bing Joe
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (12): : 11713 - 11723
  • [3] Interface engineering of Li6.75La3Zr1.75Ta0.25O12via in situ built LiI/ZnLix mixed buffer layer for solid-state lithium metal batteries
    Zhai, Lei
    Wang, Jinhuan
    Zhang, Xiaoyu
    Zhou, Xunzhu
    Jiang, Fuyi
    Li, Lin
    Sun, Jianchao
    CHEMICAL SCIENCE, 2024, 15 (19) : 7144 - 7149
  • [4] Artificially transformed ultra-stable Li6.75La3Zr1.75Ta0.25O12 incorporated composite solid electrolyte towards high voltage solid lithium metal batteries
    Luo, Shiqiang
    Ren, Hao
    Zhao, Enyou
    Orita, Akihiro
    Zhang, Zhengxi
    Yang, Li
    Hirano, Shin-ichi
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [5] The role of Li site occupancy on the Li-ion conductivity of Ta-doped Li6.75La3Zr1.75Ta0.25O12 solid electrolyte materials with high Li concentrations
    Zhang, Xingxing
    Li, Cheng
    Liu, Weili
    Oh, Tae-Sik
    Fergus, Jeffrey W.
    SOLID STATE IONICS, 2021, 369
  • [6] In-situ construction of a composite interlayer for dendrite-free Li6.75La3Zr1.75Ta0.25O12 solid-state batteries
    Wang, Jinhuan
    Han, Xiaojiao
    Feng, Yifei
    Chen, Shuai
    Yuan, Hua
    Yang, Ruixia
    Du, Wei
    Hou, Chuanxin
    Liu, Xiao
    Tong, Tao
    Zhang, Wenli
    Jiang, Fuyi
    Sun, Jianchao
    Zhang, Xiaoyu
    COMPOSITES COMMUNICATIONS, 2024, 46
  • [7] Two-step strategy to optimize interfacial compatibility of polyether sulfone-Li6.75La3Zr1.75Ta0.25O12 composite polymer electrolytes with Li anode for solid lithium battery with a wide working temperature range
    Lu, Zhengyi
    Liu, Changfei
    Wang, Enli
    Yang, Ruizhi
    Yang, Hongxun
    Jin, Chao
    JOURNAL OF POWER SOURCES, 2024, 596
  • [8] Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte
    Dobretsov, Egor A.
    Mateyshina, Yulia G.
    Uvarov, Nikolai F.
    SOLID STATE IONICS, 2017, 299 : 55 - 59
  • [9] Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance
    Liu, Ting
    Ren, Yaoyu
    Shen, Yang
    Zhao, Shi-Xi
    Lin, Yuanhua
    Nan, Ce-Wen
    JOURNAL OF POWER SOURCES, 2016, 324 : 349 - 357
  • [10] Revealing the effect of double bond-modified Li6.75La3Zr1.75Ta0.25O12 on the Li-ion conduction of composite solid electrolytes
    Song, Jiechen
    Xu, Yuxing
    Zhou, Yuncheng
    He, Rui
    Wei, Aijia
    Tan, Qiangqiang
    MATERIALS TODAY ENERGY, 2024, 43