Towards Dependability Metrics for Neural Networks

被引:0
|
作者
Cheng, Chih-Hong [1 ]
Nuhrenberg, Georg [1 ]
Huang, Chung-Hao [1 ]
Ruess, Harald [1 ]
Yasuoka, Hirotoshi [2 ]
机构
[1] Fortiss Res Inst Free State Bavaria, Munich, Germany
[2] DENSO CORP, Kariya, Aichi, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Artificial neural networks (NN) are instrumental in realizing highly-automated driving functionality. An overarching challenge is to identify best safety engineering practices for NN and other learning-enabled components. In particular, there is an urgent need for an adequate set of metrics for measuring allimportant NN dependability attributes. We address this challenge by proposing a number of NN-specific and efficiently computable metrics for measuring NN dependability attributes including robustness, interpretability, completeness, and correctness.
引用
收藏
页码:43 / 46
页数:4
相关论文
共 50 条
  • [1] Assessing dependability of wireless networks using neural networks
    Snow, A.
    Rastogi, P.
    Weckman, G.
    [J]. MILCOM 2005 - 2005 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-5, 2005, : 2809 - 2815
  • [2] Neural metrics - Software metrics in artificial neural networks
    Leung, WK
    Simpson, R
    [J]. KES'2000: FOURTH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, VOLS 1 AND 2, PROCEEDINGS, 2000, : 209 - 212
  • [3] Introduction to dependability metrics
    Eusgeld, Irene
    Freiling, Felix C.
    [J]. DEPENDABILITY METRICS: ADVANCED LECTURES, 2008, 4909 : 1 - +
  • [4] Metrics Applied to Brain Neural Networks
    Delahaye, E. M.
    de Arriba, P.
    Buenamaizon, R. B.
    Graffigna, J. P.
    Otoya, R.
    Galiana, G.
    [J]. ADVANCES IN BIOENGINEERING AND CLINICAL ENGINEERING, SABI 2022, 2024, 105 : 388 - 395
  • [5] Riemannian metrics for neural networks I: feedforward networks
    Ollivier, Yann
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2015, 4 (02) : 108 - 153
  • [6] Towards Path Quality Metrics for Overlay Networks
    Lareida, Andri
    Meier, Daniel
    Bocek, Thomas
    Stiller, Burkhard
    [J]. 2016 IEEE 41ST CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2016, : 156 - 159
  • [7] Dependability Evaluation of Numerical Control Machine Based on Fuzzy Neural Networks
    Zhang Hong-bin
    Jia Zhi-xin
    Xi An-min
    [J]. 2009 INTERNATIONAL CONFERENCE ON FUTURE BIOMEDICAL INFORMATION ENGINEERING (FBIE 2009), 2009, : 453 - 456
  • [8] Towards the evolution of neural networks
    Macukow, B
    Grzenda, M
    [J]. OPTO-ELECTRONICS REVIEW, 2001, 9 (03) : 316 - 319
  • [9] Software Dependability Assessment Using DevOps Metrics
    Popentiu-Vladicescu, Florin
    Albeanu, Grigore
    [J]. 2022 6TH INTERNATIONAL CONFERENCE ON BUSINESS AND INFORMATION MANAGEMENT, ICBIM, 2022, : 168 - 172
  • [10] Software Security, Privacy, and Dependability Metrics and Measurement
    Hatzivasilis, George
    Papaefstathiou, Ioannis
    Manifavas, Charalampos
    [J]. IEEE SOFTWARE, 2016, 33 (04) : 46 - 54