Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers

被引:30
|
作者
Wloch, Andrzej [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, PL-35359 Rzeszow, Poland
关键词
Fibonacci number; Lucas number; k-Independent set; Counting; GRAPHS; SETS;
D O I
10.1016/j.amc.2012.11.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study some properties of the generalized Fibonacci numbers and the generalized Lucas numbers. These numbers are equal to the total numbers of k-independent sets in special graphs. We give some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, which can be useful also in problems of counting of k-independent sets in graphs. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:5564 / 5568
页数:5
相关论文
共 50 条
  • [1] Some identities for generalized Fibonacci and Lucas numbers
    Szynal-Liana, Anetta
    Wloch, Iwona
    Liana, Miroslaw
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 324 - 328
  • [2] Identities on generalized Fibonacci and Lucas numbers
    Nagaraja, K. M.
    Dhanya, P.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (03) : 189 - 202
  • [3] Some identities involving the generalized Fibonacci and Lucas numbers
    Zhao, FZ
    Wang, TM
    [J]. ARS COMBINATORIA, 2004, 72 : 311 - 318
  • [4] SOME NEW IDENTITIES CONCERNING GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Siar, Zafer
    Keskin, Refik
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03): : 211 - 222
  • [5] New identities involving generalized Fibonacci and generalized Lucas numbers
    W. M. Abd-Elhameed
    N. A. Zeyada
    [J]. Indian Journal of Pure and Applied Mathematics, 2018, 49 : 527 - 537
  • [6] New identities involving generalized Fibonacci and generalized Lucas numbers
    Abd-Elhameed, W. M.
    Zeyada, N. A.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (03): : 527 - 537
  • [7] Some Properties of the Generalized Fibonacci and Lucas Numbers
    Djordjevic, Gospava B.
    Djordjevic, Snezana S.
    [J]. FILOMAT, 2020, 34 (08) : 2655 - 2665
  • [8] New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
    da Silva, Robson
    [J]. ARS COMBINATORIA, 2018, 137 : 103 - 111
  • [9] Tiling approach to obtain identities for generalized Fibonacci and Lucas numbers
    Belbachir, Hacene
    Belkhir, Amine
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 13 - 17
  • [10] Some identities involving the Fibonacci numbers and Lucas numbers
    Zhang, WP
    [J]. FIBONACCI QUARTERLY, 2004, 42 (02): : 149 - 154