K-NN: ESTIMATING AN ADEQUATE VALUE FOR PARAMETER K

被引:0
|
作者
Borsato, Bruno [1 ]
Plastino, Alexandre [1 ]
Merschmann, Luiz [2 ]
机构
[1] Univ Fed Fluminense, Dept Comp Sci, Niteroi, RJ, Brazil
[2] Ouro Preto Federal Univ, Dept Exact & Appl Sci, Joao Monlevade, Brazil
关键词
k-NN; classification; data mining;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The k-NN (k Nearest Neighbours) classification technique is characterized by its simplicity and efficient performance on many databases. However, the good performance of this method relies on the choice of an appropriate value for the input parameter k. In this work, we propose methods to estimate an adequate value for parameter k for any given database. Experimental results have shown that, in terms of predictive accuracy, k-NN using the estimated value for k usually outperforms k-NN with the values commonly used for k, as well as well-known methods such as decision trees and naive Bayes classification.
引用
收藏
页码:459 / +
页数:2
相关论文
共 50 条
  • [1] DBSCAN Parameter Selection Based on K-NN
    Delgado, Leonardo
    Morales, Eduardo F.
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE (MICAI 2021), PT I, 2021, 13067 : 187 - 198
  • [2] An evidence-theoretic k-NN rule with parameter optimization
    Zouhal, LM
    Denoeux, T
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (02): : 263 - 271
  • [3] A case based method to predict optimal k value for k-NN algorithm
    Yang Zhongguo
    Li Hongqi
    Zhu Liping
    Liu Qiang
    Ali, Sikandar
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (01) : 55 - 65
  • [4] A New Method For Selection Optimum k Value In k-NN Classification Algorithm
    Maleki, Masoud
    Eroglu, Kubra
    Aydemir, Onder
    Manshoori, Negin
    Kayikcioglu, Temel
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [5] On the Merge of k-NN Graph
    Zhao, Wan-Lei
    Wang, Hui
    Lin, Peng-Cheng
    Ngo, Chong-Wah
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (06) : 1496 - 1510
  • [6] On k-NN method with preprocessing
    University of Information Technology and Management, H. Sucharskiego 2, 35-225 Rzeszow, Poland
    不详
    [J]. Fundam Inf, 2006, 3 (343-358):
  • [7] Fuzzy k-NN SVM
    Cheng, Hui-Chuan
    Yang, Chan-Yun
    Jan, Gene Eu
    Chen, Angela Shin-yih
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1227 - 1232
  • [8] Moderating k-NN Classifiers
    Fuad M. Alkoot
    Josef Kittler
    [J]. Pattern Analysis & Applications, 2002, 5 : 326 - 332
  • [9] Trajectory Clustering and k-NN for Robust Privacy Preserving k-NN Query Processing in GeoSpark
    Dritsas, Elias
    Kanavos, Andreas
    Trigka, Maria
    Vonitsanos, Gerasimos
    Sioutas, Spyros
    Tsakalidis, Athanasios
    [J]. ALGORITHMS, 2020, 13 (08)
  • [10] On k-NN method with preprocessing
    Suraj, Z
    Delinnata, P
    [J]. FUNDAMENTA INFORMATICAE, 2006, 69 (03) : 343 - 358