Growing Degree-day Models for Predicting Lowbush Blueberry (Vaccinium angustifolium Ait.) Ramet Emergence, Tip Dieback, and Flowering in Nova Scotia, Canada
Experiments were established to evaluate the suitability of growing degree-day (GDD, T-base = 0 degrees C) models for predicting emergence, tip dieback, and flowering of low bush blueberry ramets in Nova Scotia, Canada. Data for model development were collected from quadrats established in several non-bearing and bearing blueberry fields throughout the dominant blueberry production areas in northern and central Nova Scotia. Blueberry ramets emerged between 222 and 265 CDD (6 May to 14 May) and reached 90% emergence between 619 and 917 GDD (7 June to 5 July). Emergence continued to slowly increase until late summer or early fall. Tip dieback began between 598 and 792 GDD (14 June to 21 June) and duration of this phase depended on whether late-emerging ramets developed to tip dieback. A four-parameter Weibull and a three-parameter Gompertz equation adequately explained cumulative blueberry ramet emergence and cumulative ramets at tip dieback as functions of GDD in the non-bearing year, respectively. The four-parameter Weibull function also explained the relationship between cumulative flowering ramets and GDD in the bearing year. Flowering ramets were first observed between 376 and 409 GDD (19 May to 30 May) in the bearing year. Model predictions for initiation of emergence, tip dieback, and flowering were 243, 692, and 389 CDD, respectively. Models were validated with independent data sets collected throughout northern and central Nova Scotia. The relationship between the percentage of open flowers on individual ramets and GDD in the bearing year was well described by a Gaussian model at two sites with a predicted peak number of open flowers between 552 and 565 GDD.