REMARK ON A CONSTRAINED VARIATIONAL PRINCIPLE FOR HEAT CONDUCTION

被引:15
|
作者
Tao, Zhao-Ling [1 ]
Chen, Guo-Hua [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Management & Engn, Nanjing 210008, Jiangsu, Peoples R China
来源
THERMAL SCIENCE | 2013年 / 17卷 / 03期
基金
中国国家自然科学基金;
关键词
heat equation; variational theory; separation of variables;
D O I
10.2298/TSCI121229040T
中图分类号
O414.1 [热力学];
学科分类号
摘要
The heat conduction equation is re-studied by the semi-inverse method combined with separation of variables; a new variational principle for the heat conduction equation is obtained. Equivalence of the existed two in literature is shown. The significance of variable separation is confirmed once more.
引用
收藏
页码:951 / 952
页数:2
相关论文
共 50 条
  • [1] A constrained variational principle for heat conduction
    He, Ji-Huan
    Lee, E. W. M.
    [J]. PHYSICS LETTERS A, 2009, 373 (31) : 2614 - 2615
  • [2] A SHORT REMARK ON HE-LEE'S VARIATIONAL PRINCIPLE FOR HEAT CONDUCTION
    Fei, Dong-Dong
    Liu, Fu-Juan
    Wang, Ping
    Liu, Hong-Yan
    [J]. THERMAL SCIENCE, 2013, 17 (05): : 1561 - 1563
  • [3] BIOTS VARIATIONAL PRINCIPLE IN HEAT CONDUCTION
    LARDNER, TJ
    [J]. AIAA JOURNAL, 1963, 1 (01) : 196 - 206
  • [4] Variational principle for nonlinear heat conduction equation
    Pleshanov, AS
    [J]. DOKLADY AKADEMII NAUK, 2000, 371 (02) : 175 - 178
  • [5] VARIATIONAL PRINCIPLE FOR UNSTEADY HEAT CONDUCTION EQUATION
    Jia, Zhijuan
    Hu, Mingsheng
    Chen, Qiaoling
    [J]. THERMAL SCIENCE, 2014, 18 (03): : 1045 - 1047
  • [6] COMPLEMENTARY FORMS OF VARIATIONAL PRINCIPLE FOR HEAT CONDUCTION AND CONVECTION
    BIOT, MA
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1967, 283 (05): : 372 - &
  • [7] NEW VARIATIONAL PRINCIPLE FOR NONLINEAR UNSTEADY HEAT-CONDUCTION PROBLEM
    LEBON, G
    [J]. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1976, 29 (NOV): : 499 - 509
  • [8] A REMARK ON WANG'S FRACTAL VARIATIONAL PRINCIPLE
    Wang, Kang-Le
    He, Chun-Hui
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (08)
  • [9] One remark to Ekeland's variational principle
    Arutyunov, A
    Bobylev, N
    Korovin, S
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (2-4) : 267 - 271
  • [10] A remark on Samuelson's variational principle in economics
    Wu, Yue
    He, Ji-Huan
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 84 : 143 - 147