Agricultural landscape-scale C factor determination and erosion prediction for various crop rotations through a remote sensing and GIS approach

被引:11
|
作者
Ayalew, Dawit Ashenafi [1 ]
Deumlich, Detlef [2 ]
Sarapatka, Borivoj [1 ]
机构
[1] Palacky Univ Olomouc, Dept Ecol & Environm Sci, Slechtitel 27, Olomouc 78371, Czech Republic
[2] Leibniz Ctr Agr Landscape Res ZALF, Working Grp Hydropedol, RA1, Eberswalder Str 84, D-15374 Muncheberg, Germany
关键词
Crop rotation; Remote sensing; C factor; Soil erosion; IACS; COVER-MANAGEMENT FACTOR; SOIL-EROSION; LAND-USE; SEQUENCE PATTERNS; SYSTEMS; BRANDENBURG; CATCHMENT; INDICATOR; GERMANY; IMPACT;
D O I
10.1016/j.eja.2020.126203
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In arable land management, different crop rotation patterns and sequences, such as changing agricultural land use to erosion prone crops, or crops providing less ground cover, can greatly influence soil loss rate through their impact on soil cover status (C factor value). The influence of crop rotation on C value and on erosion rate is often determined on an experimental plot scale, so the results are often erroneous when extrapolated to large heterogeneous landscapes, where they fail to capture the spatiotemporal variability beyond the experimental sites. In the present study we have endeavored to investigate the impact of various crop rotation patterns on C value and on subsequent soil erosion rate, at a landscape level, by combining 28 time-series satellite images (from 2013 to 2016) along with annually updated land-use data, via the integrated administration and control system (IACS), from the Uckermark district of north eastern Germany. In total, 21 different crop sequences were investigated. Winter wheat (WW), winter rape (WR), and maize (Mz) were found to be the predominant arable crops grown in the study area. The highest average annual C values were estimated from crop sequences involving Mz and sugar beet (SB), both as pre-crops and succeeding crops. The highest value of 0.39 was computed from SB/Mz rotation. On the other hand, crop rotation involving WR gave significantly lower annual C values in all the years considered, with the lowest average annual C value of 0.07 calculated on WR parcels preceded by winter cereals. It was also apparent that crop rotation patterns influenced C value in a temporally variable manner. Among the self-sequencing patterns, WR/WR reduced the C value significantly compared with Mz/Mz and to a lesser extent compared with WW/WW. Continuous cultivation of Mz increased the potential soil loss rate by as much as 72 % compared to WR/WR and by 51 % compared to WW/WW. It was also possible to determine the spatial distribution of the impact of crop rotation on soil erosion risk within the study area. The results obtained agreed with the results of other international and regional studies. Overall, the output from this research could contribute towards further efficient investigation of the impact of agronomic practices on the environment in a large agricultural landscape, without the need to set up multi-location experimental plots.
引用
收藏
页数:13
相关论文
共 10 条
  • [1] Estimation of soil erosion and crop suitability for a watershed through remote sensing and GIS approach
    Warwade, Pratibha
    Hardaha, Mahesh Kumar
    Kumar, Dheeraj
    Chandniha, Surendra Kumar
    [J]. INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 84 (01): : 18 - 23
  • [2] Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards
    Osborne, PE
    Alonso, JC
    Bryant, RG
    [J]. JOURNAL OF APPLIED ECOLOGY, 2001, 38 (02) : 458 - 471
  • [3] Agricultural Area Diversification and Crop Water Demand Analysis: A Remote Sensing and GIS Approach
    B. U. Choudhury
    Anil Sood
    S. S. Ray
    P. K. Sharma
    S. Panigrahy
    [J]. Journal of the Indian Society of Remote Sensing, 2013, 41 : 71 - 82
  • [4] Agricultural Area Diversification and Crop Water Demand Analysis: A Remote Sensing and GIS Approach
    Choudhury, B. U.
    Sood, Anil
    Ray, S. S.
    Sharma, P. K.
    Panigrahy, S.
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (01) : 71 - 82
  • [5] Integrated use of GIS and remote sensing techniques for landscape-scale archaeological analysis: the case study of Metaponto, Basilicata, Italy
    Abate, Nicodemo
    Roubis, D.
    Sogliani, F.
    Vitale, V.
    Sileo, M.
    Arzu, P.
    Lasaponara, R.
    Masini, N.
    [J]. EXPLORATION GEOPHYSICS, 2024, 55 (01) : 51 - 62
  • [6] Agricultural productivity and water quality tradeoffs of winter cover crops at a landscape scale through the lens of remote sensing
    Kushal, K. C.
    Khanal, Sami
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 330
  • [7] The prediction of leaf area index from forest polygons decomposed through the integration of remote sensing, GIS, UNIX, and C
    Wulder, MA
    [J]. COMPUTERS & GEOSCIENCES, 1998, 24 (02) : 151 - 157
  • [8] Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India
    V. Prasannakumar
    R. Shiny
    N. Geetha
    H. Vijith
    [J]. Environmental Earth Sciences, 2011, 64 : 965 - 972
  • [9] Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India
    Prasannakumar, V.
    Shiny, R.
    Geetha, N.
    Vijith, H.
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2011, 64 (04) : 965 - 972