On ordinary primes for modular forms and the theta operator

被引:1
|
作者
Chida, Masataka [1 ]
Kaneko, Masanobu
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
[2] Kyushu Univ 33, Fac Math, Fukuoka 8128581, Japan
关键词
ordinary prime; theta operator;
D O I
10.1090/S0002-9939-06-08561-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a criterion for a prime being ordinary for a modular form, by using the theta operator of Ramanujan.
引用
收藏
页码:1001 / 1005
页数:5
相关论文
共 50 条
  • [1] On the theta operator for Hermitian modular forms of degree 2
    Kikuta, Toshiyuki
    Nagaoka, Shoyu
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (01): : 145 - 163
  • [2] ON THE THETA OPERATOR FOR MODULAR FORMS MODULO PRIME POWERS
    Chen, Imin
    Kiming, Ian
    [J]. MATHEMATIKA, 2016, 62 (02) : 321 - 336
  • [3] On the theta operator for Hermitian modular forms of degree 2
    Toshiyuki Kikuta
    Shoyu Nagaoka
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2017, 87 : 145 - 163
  • [4] A theta operator on Picard modular forms modulo an inert prime
    de Shalit, Ehud
    Goren, Eyal Z.
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2016, 3
  • [5] Theta operator on Hermitian modular forms over the Eisenstein field
    Nagaoka, Shoyu
    Takemori, Sho
    [J]. RAMANUJAN JOURNAL, 2020, 52 (01): : 105 - 121
  • [6] A theta operator on Picard modular forms modulo an inert prime
    Ehud de Shalit
    Eyal Z. Goren
    [J]. Research in the Mathematical Sciences, 3
  • [7] Theta operator on Hermitian modular forms over the Eisenstein field
    Shoyu Nagaoka
    Sho Takemori
    [J]. The Ramanujan Journal, 2020, 52 : 105 - 121
  • [8] The theta-operator and the divisors of modular forms on genus zero subgroups
    Ahlgren, S
    [J]. MATHEMATICAL RESEARCH LETTERS, 2003, 10 (5-6) : 787 - 798
  • [9] Ordinary primes in Hilbert modular varieties
    Suh, Junecue
    [J]. COMPOSITIO MATHEMATICA, 2020, 156 (04) : 647 - 678
  • [10] Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes
    Harron, Robert
    Lei, Antonio
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (03): : 673 - 707