Estimation of genetic parameters for daily gains of bulls with multi-trait and random regression models

被引:17
|
作者
Krejcova, Hana [1 ]
Mielenz, Norbert [1 ]
Pribyl, Josef [1 ]
Schueler, Lutz [1 ]
机构
[1] Univ Halle Wittenberg, Inst Agr & Nutrit Sci, D-06108 Halle, Germany
来源
关键词
bulls; daily gain; random regression; heritability;
D O I
10.5194/aab-50-37-2007
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The average daily gains of 6,420 Czech Pied bulls (dual-purpose, Simmental type) from 7 breeding stations were analyzed using single-trait animal models, a multi-trait animal model and random regression models. The effects of station, year and season were taken into account by creating herd-year-season classes (HYS) with the season being defined as a 3-month class starting with December. Legendre polynomials of the 1(st) to the 4(th) degree were used to describe the daily gains within the HYS classes as well as to model bull-specific gain curves. The comparison of the h(2)-values estimated with single-trait models and those gained with a multi-trait model returned only insignificant differences. The comparison of genetic parameters based on the multi-trait model to those from different random regression models shows that polynomials of at least the 2(nd) degree are to be used for the genetic analysis of daily gains.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [1] Comparison of breeding values for daily gains of bulls estimated with multi-trait and random regression models
    Krejcova, Hana
    Mielenz, Norbert
    Pribyl, Josef
    Schueler, Lutz
    [J]. ARCHIV FUR TIERZUCHT-ARCHIVES OF ANIMAL BREEDING, 2007, 50 (02): : 147 - 154
  • [2] Genetic parameters of body weight in sheep estimated via random regression and multi-trait animal models
    Wolc, A.
    Barczak, E.
    Wojtowski, J.
    Slosarz, P.
    Szwaczkowski, T.
    [J]. SMALL RUMINANT RESEARCH, 2011, 100 (01) : 15 - 18
  • [3] Genetic evaluation using multi-trait and random regression models in Simmental beef cattle
    Mota, R. R.
    Marques, L. F. A.
    Lopes, P. S.
    da Silva, L. P.
    Neto, F. R. A.
    de Resende, M. D. V.
    Torres, R. A.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2013, 12 (03): : 2465 - 2480
  • [4] Genetic parameters estimated with multi-trait and linear spline random regression models using Gelbvieh early growth data
    Iwaisaki, H.
    Tsuruta, S.
    Misztal, I.
    Bertrand, J. K.
    [J]. JOURNAL OF DAIRY SCIENCE, 2004, 87 : 6 - 6
  • [5] Genetic parameters estimated with multi-trait and linear spline random regression models using Gelbvieh early growth data
    Iwaisaki, H.
    Tsuruta, S.
    Misztal, I.
    Bertrand, J. K.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2004, 82 : 6 - 6
  • [6] Genetic parameters estimated with multi-trait and linear spline random regression models using Gelbvieh early growth data
    Iwaisaki, H.
    Tsuruta, S.
    Misztal, I.
    Bertrand, J. K.
    [J]. POULTRY SCIENCE, 2004, 83 : 6 - 6
  • [7] Genetic Evaluation of Growth Traits in Nellore Cattle through Multi-trait and Random Regression Models
    Teixeira, Bruno Bastos
    Mota, Rodrigo Reis
    Lobo, Raysildo Barbosa
    da Silva, Luciano Pinheiro
    Souza Carneiro, Antonio Policarpo
    da Silva, Felipe Gomes
    Caetano, Giovani da Costa
    Fonseca e Silva, Fabyano
    [J]. CZECH JOURNAL OF ANIMAL SCIENCE, 2018, 63 (06) : 212 - 221
  • [8] Estimation of Genetic Parameters by Single-Trait and Multi-Trait Models for Carcass Traits in Hanwoo Cattle
    Srivastava, Swati
    Lopez, Bryan Irvine
    de las Heras-Saldana, Sara
    Park, Jong-Eun
    Shin, Dong-Hyun
    Chai, Han-Ha
    Park, Woncheol
    Lee, Seung-Hwan
    Lim, Dajeong
    [J]. ANIMALS, 2019, 9 (12):
  • [9] Genetic analysis of live weight of Sardi sheep using random regression and multi-trait animal models
    Jannoune, A.
    Boujenane, I.
    Falaki, M.
    Derqaoui, L.
    [J]. SMALL RUMINANT RESEARCH, 2015, 130 : 1 - 7
  • [10] Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models
    Karami, K.
    Zerehdaran, S.
    Barzanooni, B.
    Lotfi, E.
    [J]. BRITISH POULTRY SCIENCE, 2017, 58 (06) : 624 - 628