FluHMM: A simple and flexible Bayesian algorithm for sentinel influenza surveillance and outbreak detection

被引:2
|
作者
Lytras, Theodore [1 ,2 ,3 ]
Gkolfinopoulou, Kassiani [1 ]
Bonovas, Stefanos [4 ,5 ]
Nunes, Baltazar [6 ,7 ]
机构
[1] Hellen Ctr Dis Control & Prevent, Dept Epidemiol Surveillance & Intervent, Agrafon 3-5, Athens 15123, Greece
[2] Barcelona Inst Global Hlth ISGlobal, Barcelona, Spain
[3] Univ Pompeu Fabra UPF, Dept Expt & Hlth Sci, Barcelona, Spain
[4] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[5] Humanitas Clin & Res Ctr, Milan, Italy
[6] Inst Nacl Saude Dr Ricardo Jorge, Dept Epidemiol, Lisbon, Portugal
[7] Univ Nova Lisboa, Ctr Invest Saude Publ, Lisbon, Portugal
关键词
Influenza; seasonal influenza; disease surveillance; hidden Markov model; epidemics; outbreak detection; Bayesian statistics; MODELS;
D O I
10.1177/0962280218776685
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Timely detection of the seasonal influenza epidemic is important for public health action. We introduce FluHMM, a simple but flexible Bayesian algorithm to detect and monitor the seasonal epidemic on sentinel surveillance data. No comparable historical data are required for its use. FluHMM segments a typical influenza surveillance season into five distinct phases with clear interpretation (pre-epidemic, epidemic growth, epidemic plateau, epidemic decline and post-epidemic) and provides the posterior probability of being at each phase for every week in the period under surveillance, given the available data. An alert can be raised when the probability that the epidemic has started exceeds a given threshold. An accompanying R package facilitates the application of this method in public health practice. We apply FluHMM on 12 seasons of sentinel surveillance data from Greece, and show that it achieves very good sensitivity, timeliness and perfect specificity, thereby demonstrating its usefulness. We further discuss advantages and limitations of the method, providing suggestions on how to apply it and highlighting potential future extensions such as with integrating multiple surveillance data streams.
引用
收藏
页码:1826 / 1840
页数:15
相关论文
共 27 条
  • [1] Performance of Bayesian outbreak detection algorithm in the syndromic surveillance of influenza-like illness in small region
    Aghaali, Mohammad
    Kavousi, Amir
    Shahsavani, Abbas
    Hashemi Nazari, Seyed Saeed
    TRANSBOUNDARY AND EMERGING DISEASES, 2020, 67 (05) : 2183 - 2189
  • [2] Sentinel surveillance system for early outbreak detection in Madagascar
    Laurence Randrianasolo
    Yolande Raoelina
    Maherisoa Ratsitorahina
    Lisette Ravolomanana
    Soa Andriamandimby
    Jean-Michel Heraud
    Fanjasoa Rakotomanana
    Robinson Ramanjato
    Armand Eugène Randrianarivo-Solofoniaina
    Vincent Richard
    BMC Public Health, 10
  • [3] Sentinel surveillance system for early outbreak detection in Madagascar
    Randrianasolo, Laurence
    Raoelina, Yolande
    Ratsitorahina, Maherisoa
    Ravolomanana, Lisette
    Andriamandimby, Soa
    Heraud, Jean-Michel
    Rakotomanana, Fanjasoa
    Ramanjato, Robinson
    Randrianarivo-Solofoniaina, Armand Eugene
    Richard, Vincent
    BMC PUBLIC HEALTH, 2010, 10
  • [4] A Bayesian Outbreak Detection Method for Influenza-Like Illness
    Garcia, Yury E.
    Andres Christen, J.
    Capistran, Andmarcos A.
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [5] An improved algorithm for outbreak detection in multiple surveillance systems
    Noufaily, Angela
    Enki, Doyo G.
    Farrington, Paddy
    Garthwaite, Paul
    Andrews, Nick
    Charlett, Andre
    STATISTICS IN MEDICINE, 2013, 32 (07) : 1206 - 1222
  • [6] Epidemiology of influenza in Ethiopia: findings from influenza sentinel surveillance and respiratory infection outbreak investigations, 2009–2015
    Abyot Bekele Woyessa
    Mesfin Mengesha
    Desalegn Belay
    Adamu Tayachew
    Workenesh Ayele
    Berhane Beyene
    Woubayehu Kassa
    Etsehiwot Zemelak
    Gelila Demissie
    Berhanu Amare
    Lucy Boulanger
    Carolina Granados
    Thelma Williams
    Israel Tareke
    Soatiana Rajatonirina
    Daddi Jima
    BMC Infectious Diseases, 18
  • [7] Epidemiology of influenza in Ethiopia: findings from influenza sentinel surveillance and respiratory infection outbreak investigations, 2009-2015
    Woyessa, Abyot Bekele
    Mengesha, Mesfin
    Belay, Desalegn
    Tayachew, Adamu
    Ayele, Workenesh
    Beyene, Berhane
    Kassa, Woubayehu
    Zemelak, Etsehiwot
    Demissie, Gelila
    Amare, Berhanu
    Boulanger, Lucy
    Granados, Carolina
    Williams, Thelma
    Tareke, Israel
    Rajatonirina, Soatiana
    Jima, Daddi
    BMC INFECTIOUS DISEASES, 2018, 18
  • [8] Evaluation of a syndromic surveillance system using the WSARE algorithm for early detection of an unusual, localized summer outbreak of influenza B: Implications for bioterrorism surveillance
    Kaufman, Zalman
    Wong, Weng-Keen
    Peled-Leviatan, Tamar
    Cohen, Erica
    Lavy, Chana
    Aharonowitz, Gali
    Dichtiar, Rita
    Bromberg, Michal
    Havkin, Ofra
    Kokia, Ehud
    Green, Manfred S.
    ISRAEL MEDICAL ASSOCIATION JOURNAL, 2007, 9 (01): : 3 - 7
  • [9] Bayesian outbreak detection algorithm for monitoring reported cases of campylobacteriosis in Germany
    Manitz, Juliane
    Hoehle, Michael
    BIOMETRICAL JOURNAL, 2013, 55 (04) : 509 - 526
  • [10] Novel Use of Flu Surveillance Data: Evaluating Potential of Sentinel Populations for Early Detection of Influenza Outbreaks
    Daughton, Ashlynn R.
    Velappan, Nileena
    Abeyta, Esteban
    Priedhorsky, Reid
    Deshpande, Alina
    PLOS ONE, 2016, 11 (07):