The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. II. IST and closed-form soliton solutions

被引:2
|
作者
Demontis, F. [1 ]
Ortenzi, G. [2 ]
Sommacal, M. [3 ]
van der Mee, C. [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Viale Merello 92, I-09121 Cagliari, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[3] Univ Northumbria Newcastle, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
关键词
Classical Heisenberg ferromagnet equation; Soliton solutions; Inverse scattering transform; Magnetic droplet; Ferromagnetic materials; MAGNETIC DROPLET SOLITONS; SPIN; MAGNONS;
D O I
10.1007/s11587-018-0395-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new, general, closed-form soliton solution formula for the classical Heisenberg ferromagnet equation with in-plane asymptotic conditions is obtained by means of the inverse scattering transform technique and the matrix triplet method. This formula encompasses the soliton solutions already known in the literature as well as a new class of soliton solutions (the so-called multipole solutions), allowing their classification and description. Examples from all classes are provided and discussed.
引用
收藏
页码:163 / 178
页数:16
相关论文
共 6 条
  • [1] The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. II. IST and closed-form soliton solutions
    F. Demontis
    G. Ortenzi
    M. Sommacal
    C. van der Mee
    Ricerche di Matematica, 2019, 68 : 163 - 178
  • [2] Effective generation of closed-form soliton solutions of the continuous classical Heisenberg ferromagnet equation
    Demontis, F.
    Lombardo, S.
    Sommacal, M.
    van der Mee, C.
    Vargiu, F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 64 : 35 - 65
  • [3] The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. I. Direct and inverse scattering theory
    Demontis, F.
    Ortenzi, G.
    Sommacal, M.
    van der Mee, C.
    RICERCHE DI MATEMATICA, 2019, 68 (01) : 145 - 161
  • [4] The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. I. Direct and inverse scattering theory
    F. Demontis
    G. Ortenzi
    M. Sommacal
    C. van der Mee
    Ricerche di Matematica, 2019, 68 : 145 - 161
  • [5] Highly accurate closed-form solutions for the free in-plane vibration of rectangular plates with arbitrary homogeneous boundary conditions
    Wang, Zekun
    Xing, Yufeng
    Sun, Qiaozhen
    JOURNAL OF SOUND AND VIBRATION, 2020, 470
  • [6] Closed-form multi-dimensional solutions and asymptotic behaviours for subdiffusive processes with crossovers: II. Accelerating case
    Awad, Emad
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (20)