Nonlinear singular problems with indefinite potential and a Superlinear perturbation

被引:3
|
作者
Papageorgiou, Nikolaos S. [1 ]
Zhang, Chao [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens, Greece
[2] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Indefinite potential; singular term; comparison principle; nonlinear regularity; nonlinear maximum principle; positive solutions; EQUATIONS;
D O I
10.1080/17476933.2020.1788004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric nonlinear Dirichlet problem driven by the p-Laplacian plus an indefinite potential. In the reaction, we have the competing effects of a parametric singular term and of a super-linear perturbation. We examine the nonexistence, existence and multiplicity of positive solutions as the parameter lambda > 0 varies.
引用
收藏
页码:1881 / 1903
页数:23
相关论文
共 50 条
  • [1] Nonlinear singular problems with indefinite potential term
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 2237 - 2262
  • [2] Nonlinear singular problems with indefinite potential term
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    [J]. Analysis and Mathematical Physics, 2019, 9 : 2237 - 2262
  • [3] Parametric Singular Problems with an Indefinite Perturbation
    Bien, Krzysztof
    Majdak, Witold
    Papageorgiou, Nikolaos S.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (04)
  • [4] Parametric Singular Problems with an Indefinite Perturbation
    Krzysztof Bień
    Witold Majdak
    Nikolaos S. Papageorgiou
    [J]. The Journal of Geometric Analysis, 2024, 34
  • [5] Multiple solutions for superlinear Dirichlet problems with an indefinite potential
    Sophia Th. Kyritsi
    Nikolaos S. Papageorgiou
    [J]. Annali di Matematica Pura ed Applicata, 2013, 192 : 297 - 315
  • [6] Multiple solutions for superlinear Dirichlet problems with an indefinite potential
    Kyritsi, Sophia Th
    Papageorgiou, Nikolaos S.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (02) : 297 - 315
  • [7] Positive solutions of superlinear boundary value problems with singular indefinite weight
    Gaudenzi, M
    Habets, P
    Zanolin, F
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (03) : 411 - 423
  • [8] ON NONLINEAR SINGULAR PERTURBATION PROBLEMS
    KORMAN, P
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (05) : 467 - 478
  • [9] Indefinite superlinear elliptic problems
    Dolcetta, IC
    [J]. VARIATIONAL METHODS FOR DISCONTINUOUS STRUCTURES: APPLICATIONS TO IMAGE SEGMENTATION, CONTINUUM MECHANICS, HOMOGENIZATION, 1996, 25 : 87 - 92
  • [10] ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL, RESONANT AT -∞, SUPERLINEAR AT plus ∞
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (02) : 261 - 286