Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity

被引:3
|
作者
Meirmanov, A. M. [1 ]
机构
[1] Belgorod State Univ, Belgorod, Russia
关键词
D O I
10.1070/SM2008v199n03ABEH003924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear system of differential equations describing the joint motion of a thermoelastic porous body and an incompressible thermofluid occupying a porous space is considered. Although the problem is linear, it is very hard to tackle due to the fact that its main differential equations involve non-smooth rapidly oscillating coefficients, inside the differentiatial operators. A rigorous substantiation based on Nguetseng's two-scale convergence method is carried out for the procedure of the derivation of homogenized equations (not containing rapidly oscillating coefficients), which for different combinations of the physical parameters can represent Biot's system of equations of thermo-poroelasticity, the system consisting of Lame's non-isotropic equations of thermoelasticity for the solid component and the acoustic equations for the fluid component of a two-temperature two-velocity continuum, or Lame's non-isotropic thermoelastic system for a two-temperature one-velocity continuum.
引用
收藏
页码:361 / 384
页数:24
相关论文
共 50 条
  • [1] Generalized Thermo-poroelasticity Equations and Wave Simulation
    Enjiang Wang
    José M. Carcione
    Fabio Cavallini
    Marco Botelho
    Jing Ba
    [J]. Surveys in Geophysics, 2021, 42 : 133 - 157
  • [2] Generalized Thermo-poroelasticity Equations and Wave Simulation
    Wang, Enjiang
    Carcione, Jose M.
    Cavallini, Fabio
    Botelho, Marco
    Ba, Jing
    [J]. SURVEYS IN GEOPHYSICS, 2021, 42 (01) : 133 - 157
  • [3] Finite Element Solvers for Biot's Poroelasticity Equations in Porous Media
    Kadeethum, T.
    Lee, S.
    Nick, H. M.
    [J]. MATHEMATICAL GEOSCIENCES, 2020, 52 (08) : 977 - 1015
  • [4] Green's function of the Lord Shulman thermo-poroelasticity theory
    Wei, Jia
    Fu, Li-Yun
    Wang, Zhi-Wei
    Ba, Jing
    Carcione, Jose M.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (03) : 1765 - 1776
  • [5] Finite Element Solvers for Biot’s Poroelasticity Equations in Porous Media
    T. Kadeethum
    S. Lee
    H. M. Nick
    [J]. Mathematical Geosciences, 2020, 52 : 977 - 1015
  • [6] Correction to: Finite Element Solvers for Biot’s Poroelasticity Equations in Porous Media
    T. Kadeethum
    S. Lee
    H. M. Nick
    [J]. Mathematical Geosciences, 2021, 53 : 1095 - 1095
  • [7] Green's function of the Lord-Shulman thermo-poroelasticity theory
    Wei, Jia
    Fu, Li-Yun
    Wang, Zhi-Wei
    Ba, Jing
    Carcione, Jose M.
    [J]. Geophysical Journal International, 2020, 221 (03): : 1765 - 1776
  • [8] Macroscopic constitutive equations of thermo-poroelasticity derived using eigenstrain-eigenstress approaches
    Suvorov, Alexander P.
    Selvadurai, A. P. S.
    [J]. PHILOSOPHICAL MAGAZINE, 2011, 91 (18) : 2317 - 2342
  • [9] Acoustic response of patchy-saturated porous media: Coupling Biot's poroelasticity equations for mono- and biphasic pore fluids
    Solazzi, Santiago G.
    Castroman, Gabriel A.
    Barbosa, Nicolas D.
    Holliger, Klaus
    Rubino, J. German
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (02): : 1324 - 1342
  • [10] Acoustic response of patchy-saturated porous media: Coupling Biot's poroelasticity equations for mono- and biphasic pore fluids
    Solazzi, Santiago G.
    Castromán, Gabriel A.
    Barbosa, Nicolás D.
    Holliger, Klaus
    Rubino, J. Germán
    [J]. Journal of the Acoustical Society of America, 1600, 156 (02): : 1324 - 1342