Combined MSF multiwavelets

被引:7
|
作者
Bownik, M [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
expansive matrix; biorthogonal (multi)wavelet; MSF (multi)wavelet; combined MSF multiwavelet;
D O I
10.1007/s00041-002-0008-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The properties of (bi)orthogonal multiwavelets associated with general expansive dilation matrices are studied It is shown that for almost every dilation (bi)orthogonal multiwavelets must be of the very special form, i. e., the union of their supports has minimal measure in the Fourier domain. This extends a one dimensional, single wavelet result of Chui and Shi.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 50 条
  • [1] Combined MSF Multiwavelets
    Marcin Bownik
    [J]. Journal of Fourier Analysis and Applications, 2002, 8 : 201 - 210
  • [2] PROCESS AND LAYOUT DESIGN OF A COMBINED MSF VTE PLANT
    HAPKE, J
    UCKERMANN, B
    [J]. DESALINATION, 1983, 45 (MAY) : 113 - 114
  • [3] DESIGN, CONSTRUCTION AND OPERATION OF A COMBINED MSF VTE-TEST EVAPORATOR
    HAPKE, J
    MADER, A
    [J]. DESALINATION, 1983, 45 (MAY) : 35 - 36
  • [4] ON ALPERT MULTIWAVELETS
    Geronimo, Jeffrey S.
    Marcellan, Francisco
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (06) : 2479 - 2494
  • [5] A construction of multiwavelets
    Ashino, R
    Nagase, M
    Vaillancourt, R
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (03) : 23 - 37
  • [6] Construction of multiwavelets
    Ashino, R.
    Nagase, M.
    Vaillancourt, R.
    [J]. Computers and Mathematics with Applications, 1996, 32 (03): : 23 - 37
  • [7] Regularity of multiwavelets
    C.A. Micchelli
    Thomas Sauer
    [J]. Advances in Computational Mathematics, 1997, 7 : 455 - 545
  • [8] Balanced multiwavelets
    Lebrun, J
    Vetterli, M
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2473 - 2476
  • [9] Regularity of multiwavelets
    Micchelli, CA
    Sauer, T
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (04) : 455 - 545
  • [10] Multiwavelets on the interval
    Han, B
    Jiang, QT
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (01) : 100 - 127