Polynomial Selection Scheme with Dynamic Parameter Estimation in Cellular Genetic Algorithm

被引:0
|
作者
Vatanutanon, Jiradej [1 ]
Noman, Nasimul [1 ]
Iba, Hitoshi [1 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Tokyo 1138654, Japan
关键词
Cellular Genetic Algorithm; Selection Scheme; Probability of Selection; Selective Pressure; Adaptive Algorithm; ASSIGNMENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent study has introduced the powerful selection scheme in cellular genetic algorithm that can produce all ranges of selective pressure. The parameters used in that study, however, are empirically estimated by numbers of experiments. In this study, we propose the idea of performing a parameter estimation from a theoretical perspective. In the concept of maximizing the probability to find the new best solution together with hill-climbing optimization, enabling search for an optimal parameter in each generation. The selection scheme with the optimal parameter yields the numbers of mating that maximizes the probability of finding better solutions. This optimal parameter changes during run and it is adaptive to the behavior of a particular evolution. In order to confirm the capability of this parameter estimation method, we have conducted experiments to compare the manually tuned static parameter and the estimated dynamic parameter obtained from this method. Result from the experiment shows that the algorithm with estimated parameter performed better than the former method, even with the best tuned parameter. Therefore, by applying this parameter estimation to the selection scheme stated at the beginning, we would be able to create a new universal adaptive paradigm for the cellular evolutionary algorithm.
引用
收藏
页码:1171 / 1178
页数:8
相关论文
共 50 条
  • [1] Genetic algorithm in parameter estimation of nonlinear dynamic systems
    Paterakis, E
    Petridis, V
    Kehagias, A
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN V, 1998, 1498 : 1008 - 1017
  • [2] A novel RNA genetic algorithm for parameter estimation of dynamic systems
    Wang, Kangtai
    Wang, Ning
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2010, 88 (11A): : 1485 - 1493
  • [3] Using a rank selection genetic algorithm to optimize parameter estimation allows for prediction of cellular responses in in silico biological models
    Porter, Gemma
    Pople, Jenny
    Niranjan, Mahesan
    Ardern-Jones, Michael
    Polak, Marta
    BRITISH JOURNAL OF DERMATOLOGY, 2022, 186 (06) : E242 - E243
  • [4] A hybrid DNA based genetic algorithm for parameter estimation of dynamic systems
    Dai, Kan
    Wang, Ning
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2012, 90 (12): : 2235 - 2246
  • [5] A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection
    Paydar, Mohammad Mahdi
    Saidi-Mehrabad, Mohammad
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 92 (5-8): : 3001 - 3017
  • [6] A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection
    Mohammad Mahdi Paydar
    Mohammad Saidi-Mehrabad
    The International Journal of Advanced Manufacturing Technology, 2017, 92 : 3001 - 3017
  • [7] Biosorption Parameter Estimation with Genetic Algorithm
    Chu, Khim Hoong
    Feng, Xiao
    Kim, Eui Yong
    Hung, Yung-Tse
    WATER, 2011, 3 (01) : 177 - 195
  • [8] Parameter selection on admission control scheme for cellular system
    Zhou, S
    Gao, P
    Yun, S
    Kim, Y
    Cho, SH
    VTC2004-SPRING: 2004 IEEE 59TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2004, : 1621 - 1625
  • [9] ALGORITHM SELECTION FOR PARAMETER ESTIMATION IN LOGIT MODELS
    WITZGALL, C
    SIAM REVIEW, 1975, 17 (02) : 392 - 392
  • [10] LFSR polynomial and seed selection using genetic algorithm
    Aleksejev, E.
    Jutman, A.
    Ubar, R.
    2006 INTERNATIONAL BALTIC ELECTRONICS CONFERENCE, PROCEEDINGS, 2006, : 179 - +