Poly (L-lactide-co-ε caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds

被引:18
|
作者
Mondal, Titash [1 ,2 ]
Sunny, M. C. [1 ]
Khastgir, D. [2 ]
Varma, H. K. [1 ]
Ramesh, P. [1 ]
机构
[1] Sree Chitra Tirunal Inst Med Sci & Technol, Biomed Technol Wing, Thiruvananthpuram 695012, Kerala, India
[2] Indian Inst Technol, Ctr Rubber Technol, Kharagpur 721302, W Bengal, India
关键词
Alendronate sodium; Bone regeneration; LLA-co-CL copolymer; Microsphere; Osteoporosis; IN-VIVO; HUMAN OSTEOBLASTS; IONIC PRODUCTS; DEGRADATION; OSTEOPOROSIS; PLASMA; BIOCERAMICS; DISSOLUTION; EXPRESSION; COPOLYMERS;
D O I
10.1016/j.msec.2012.01.011
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Microspheric scaffolds of poly-(lactide-co-caprolactone) loaded with alendronate sodium, a family precursor of bisphosphonate drug and bioactive glass-ceramic (BGS) were prepared for the treatment of osteoporosis like bone defects with the rationale of getting a combined effect/concurrent advantage of osteoclast apoptosis as well as the augmentation of bone regeneration. The porous microspheres were generated by oil in water/solvent evaporation technique. The distribution of bioactive glass-ceramic was evidenced by the microcomputed tomography (mu-CT) and scanning electron microscopy analyses. The microspheres were evaluated for their in vitro cytocompatibility using L929 cell line and were found to be noncytotoxic. The osteoinductivity of the scaffold was assessed by its response in simulated body fluid and observed an excellent hydroxy carbonate apatite (HCA) layer formation on the surface which revealed the bone bonding and bone regeneration capability of the scaffold. The cell adhesion studies was performed with L-929 cell line and a marking cell growth on the surface as well as in the pores of the bioactive glass-ceramic as well as bioactive glass-ceramic cum drug incorporated microspheres was evidenced by the Confocal laser scanning microscopy (CLSM) investigation. No cell adhesion was observed onto the surface of the bare microspheres prepared by the copolymer alone where as the bioactive glass-ceramic and drug cum bioactive glass-ceramic loaded microspheres were found to promote the cell adhesion. The viability of the adhered cells on the microspheres was checked by flourescein diacetate (FDA) staining and it was observed that the adhered cells were viable and metabolically active. The release of the drug, alendronate sodium, directly into the problem site makes the presently prepared microsphere superior to the oral variety of drug available which is associated with oral discomfort and low bioavailability. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:697 / 706
页数:10
相关论文
共 50 条
  • [1] In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone) Composite Scaffolds
    Tainio, Jenna
    Paakinaho, Kaarlo
    Ahola, Niina
    Hannula, Markus
    Hyttinen, Jari
    Kellomaeki, Minna
    Massera, Jonathan
    MATERIALS, 2017, 10 (11):
  • [2] Electrospun Polyhydroxybutyrate and Poly(L-lactide-co-ε-caprolactone) Composites as Nanofibrous Scaffolds
    Daranarong, Donraporn
    Chan, Rodman T. H.
    Wanandy, Nico S.
    Molloy, Robert
    Punyodom, Winita
    Foster, L. John R.
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [3] Rat costochondral cell characteristics on poly (L-lactide-co-ε-caprolactone) scaffolds
    Honda, M
    Morikawa, N
    Hata, K
    Yada, T
    Morita, S
    Ueda, M
    Kimata, K
    BIOMATERIALS, 2003, 24 (20) : 3511 - 3519
  • [4] Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering
    de Souza, Joyce R.
    Cardoso, Lais M.
    de Toledo, Priscila T. A.
    Rahimnejad, Maedeh
    Kito, Leticia T.
    Thim, Gilmar P.
    Campos, Tiago M. B.
    Borges, Alexandre L. S.
    Bottino, Marco C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2024, 112 (05)
  • [5] In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-ε-caprolactone) scaffolds
    Jeong, SI
    Kim, BS
    Kang, SW
    Kwon, JH
    Lee, YM
    Kim, SH
    Kim, YH
    BIOMATERIALS, 2004, 25 (28) : 5939 - 5946
  • [6] Surface modified poly(L-lactide-co-ε-caprolactone) microspheres as scaffold for tissue engineering
    Garkhal, Kalpna
    Verma, Shalini
    Tikoo, K.
    Kumar, Neeraj
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 82A (03) : 747 - 756
  • [7] Highly Elastic Scaffolds Produced by Melt Electrowriting of Poly(L-lactide-co-ε-caprolactone)
    Sanchez Diaz, Raquel
    Park, Jong-Ryul
    Rodrigues, Leona L.
    Dalton, Paul D.
    De-Juan-Pardo, Elena M.
    Dargaville, Tim R.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [8] Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-ε-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-ε-caprolactone)
    Bramfeldt, Hanna
    Sarazin, Pierre
    Vermette, Patrick
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 83A (02) : 503 - 511
  • [9] The Effect of Hybridization of Hydrogels and Poly(L-lactide-co-ε-caprolactone) Scaffolds on Cartilage Tissue Engineering
    Jung, Youngmee
    Kim, Sang-Heon
    Kim, Young Ha
    Kim, Soo Hyun
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2010, 21 (05) : 581 - 592
  • [10] Preparation and biocompatibility of electrospun poly(L-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous scaffolds
    Fang, Zhengdong
    Fu, Weiguo
    Dong, Zhihui
    Zhang, Xiangman
    Gao, Bin
    Guo, Daqiao
    He, Hongbing
    Wang, Yuqi
    APPLIED SURFACE SCIENCE, 2011, 257 (09) : 4133 - 4138