Magnetization and Spin Excitations of Non-Abelian Quantum Hall States

被引:0
|
作者
Kun Yang [1 ,2 ]
Rezayi, E. H. [3 ]
机构
[1] Florida State Univ, NHMFL, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[3] Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA
关键词
D O I
10.1103/PhysRevLett.101.216808
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Significant insights into non-Abelian quantum Hall states are obtained from studying special multiparticle interaction Hamiltonians, whose unique ground states are the Moore-Read and Read-Rezayi states for the case of spinless electrons. We generalize this approach to include the electronic spin-1/2 degree of freedom. We demonstrate that in the absence of Zeeman splitting, the ground states of such Hamiltonians have large degeneracies and very rich spin structures. The spin structure of the ground states and low-energy excitations can be understood based on an emergent SU(3) symmetry for the case corresponding to the Moore-Read state. These states with different spin quantum numbers represent non-Abelian quantum Hall states with different magnetizations, whose quasihole properties are likely to be similar to those of their spin-polarized counterparts.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States
    Bernevig, B. Andrei
    Regnault, N.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (20)
  • [2] New class of non-Abelian spin-singlet quantum Hall states
    Ardonne, E
    Schoutens, K
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (25) : 5096 - 5099
  • [3] Matrix model for non-Abelian quantum Hall states
    Dorey, Nick
    Tong, David
    Turner, Carl
    [J]. PHYSICAL REVIEW B, 2016, 94 (08)
  • [4] Partition functions of non-Abelian quantum Hall states
    Cappelli, Andrea
    Viola, Giovanni
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (07)
  • [5] NON-ABELIAN STATISTICS IN THE FRACTIONAL QUANTUM HALL STATES
    WEN, XG
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (06) : 802 - 805
  • [6] Non-Abelian twist to integer quantum Hall states
    Lopes, Pedro L. S.
    Quito, Victor L.
    Han, Bo
    Teo, Jeffrey C. Y.
    [J]. PHYSICAL REVIEW B, 2019, 100 (08)
  • [7] Fractional Quantum Hall States with Non-Abelian Statistics
    Moeller, G.
    Wojs, A.
    Cooper, N. R.
    [J]. ACTA PHYSICA POLONICA A, 2009, 116 (05) : 847 - 848
  • [8] Exclusion statistics for non-Abelian quantum Hall states
    Schoutens, K
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (09) : 1929 - 1932
  • [9] Bridge between Abelian and non-Abelian fractional quantum hall states
    Regnault, N.
    Goerbig, M. O.
    Jolicoeur, Th.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (06)
  • [10] From Luttinger liquid to non-Abelian quantum Hall states
    Teo, Jeffrey C. Y.
    Kane, C. L.
    [J]. PHYSICAL REVIEW B, 2014, 89 (08)