Phase transition in equilibrium fluctuations of symmetric slowed exclusion

被引:22
|
作者
Franco, Tertuliano [1 ]
Goncalves, Patricia [2 ,3 ]
Neumann, Adriana [4 ]
机构
[1] Univ Fed Bahia, Inst Matemat, BR-40170110 Salvador, BA, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
[3] Univ Minho, Ctr Matemat, CMAT, P-4710057 Braga, Portugal
[4] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Equilibrium fluctuations; Phase transition; Slowed exclusion; CENTRAL-LIMIT-THEOREM; TAGGED PARTICLE; CONDUCTANCES;
D O I
10.1016/j.spa.2013.06.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze the equilibrium fluctuations of density, current and tagged particle in symmetric exclusion with a slow bond. The system evolves in the one-dimensional lattice and the jump rate is everywhere equal to one except at the slow bond where it is alpha n(-beta), with alpha > 0, beta is an element of E [0, +infinity] and 17 is the scaling parameter. Depending on the regime of beta, we find three different behaviors for the limiting fluctuations whose covariances are explicitly computed. In particular, for the critical value beta = 1, starting a tagged particle near the slow bond, we obtain a family of Gaussian processes indexed in a, interpolating a fractional Brownian motion of Hurst exponent 1/4 and the degenerate process equal to zero. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:4156 / 4185
页数:30
相关论文
共 50 条
  • [1] Phase transition in equilibrium fluctuations of symmetric slowed exclusion (vol 123, pg 4156, 2013)
    Franco, Tertuliano
    Goncalves, Patricia
    Neumann, Adriana
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (10) : 3235 - 3242
  • [2] Non-equilibrium and stationary fluctuations of a slowed boundary symmetric exclusion
    Franco, Tertuliano
    Goncalves, Patricia
    Neumann, Adriana
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (04) : 1413 - 1442
  • [3] Equilibrium Fluctuations for the Symmetric Exclusion Process on a Compact Riemannian Manifold
    van Ginkel, Bart
    Redig, Frank
    MARKOV PROCESSES AND RELATED FIELDS, 2022, 28 (01) : 29 - 51
  • [4] Equilibrium fluctuations for diffusive symmetric exclusion with long jumps and infinitely extended reservoirs
    Bernardin, C.
    Goncalves, P.
    Jara, M.
    Scotta, S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (01): : 303 - 342
  • [5] Explicit LDP for a slowed RW driven by a symmetric exclusion process
    Avena, L.
    Jara, M.
    Vollering, F.
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (3-4) : 865 - 915
  • [6] Explicit LDP for a slowed RW driven by a symmetric exclusion process
    L. Avena
    M. Jara
    F. Völlering
    Probability Theory and Related Fields, 2018, 171 : 865 - 915
  • [7] Quadratic fluctuations of the symmetric simple exclusion
    Goncalves, Patricia
    Jara, Milton
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 605 - 632
  • [8] Non-equilibrium fluctuations at the QCD phase transition
    Nahrgang, M.
    Bleicher, M.
    HOT QUARKS 2010: WORKSHOP FOR YOUNG SCIENTISTS ON THE PHYSICS OF ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, 2011, 270
  • [9] EQUILIBRIUM FLUCTUATIONS FOR EXCLUSION PROCESSES WITH SPEED CHANGE
    LANDIM, C
    VARES, ME
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 52 (01) : 107 - 118
  • [10] Phase transition in the two-component symmetric exclusion process with open boundaries
    Brzank, A.
    Schuetz, G. M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,