Universal polynomials for Severi degrees of toric surfaces

被引:14
|
作者
Ardila, Federico [1 ]
Block, Florian [2 ]
机构
[1] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Enumerative geometry; Toric surfaces; Gromov-Witten theory; Seven degrees; Node polynomials; NODE POLYNOMIALS; CHERN CLASSES; CURVES; VARIETIES;
D O I
10.1016/j.aim.2013.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Severi variety parameterizes plane curves of degree d with delta nodes. Its degree is called the Severi degree. For large enough d, the Severi degrees coincide with the Gromov-Witten invariants of CP2. Fomin and Mikhalkin (2010) [10] proved the 1995 conjecture that for fixed delta, Severi degrees are eventually polynomial in d. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". We illustrate our theorems by explicitly computing, for a small number of nodes, the Severi degree of any large enough Hirzebruch surface and of a singular surface. Our strategy is to use tropical geometry to express Severi degrees in terms of Brugalle and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 193
页数:29
相关论文
共 50 条
  • [1] Severi degrees on toric surfaces
    Liu, Fu
    Osserman, Brian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 739 : 121 - 158
  • [2] A note on the Severi problem for toric surfaces
    Lang, Lionel
    Tyomkin, Ilya
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 1677 - 1705
  • [3] A note on the Severi problem for toric surfaces
    Lionel Lang
    Ilya Tyomkin
    Mathematische Annalen, 2023, 385 : 1677 - 1705
  • [4] The universal Severi variety of rational curves on K3 surfaces
    Kemeny, Michael
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 159 - 174
  • [5] On universal Severi varieties of low genus K3 surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 953 - 960
  • [6] On universal Severi varieties of low genus K3 surfaces
    Ciro Ciliberto
    Thomas Dedieu
    Mathematische Zeitschrift, 2012, 271 : 953 - 960
  • [7] Universal rational parametrizations and spline curves on toric surfaces
    Krasauskas, R
    Kazakeviciute, M
    COMPUTATIONAL METHODS FOR ALGEBRAIC SPLINE SURFACES, 2005, : 213 - 231
  • [8] Universal polynomials for singular curves on surfaces
    Li, Jun
    Tzeng, Yu-jong
    COMPOSITIO MATHEMATICA, 2014, 150 (07) : 1169 - 1182
  • [9] Surfaces on the Severi line
    Angel Barja, Miguel
    Pardini, Rita
    Stoppino, Lidia
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (05): : 734 - 743
  • [10] Quotients of Severi–Brauer Surfaces
    A. S. Trepalin
    Doklady Mathematics, 2021, 104 : 390 - 393