Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs

被引:37
|
作者
Chen-Harris, Haiyin [1 ]
Borucki, Monica K. [1 ]
Torres, Clinton [1 ]
Slezak, Tom R. [1 ]
Allen, Jonathan E. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
BMC GENOMICS | 2013年 / 14卷
关键词
Quasispecies; Viral evolution; DNA mutational analysis; High-throughput sequencing; Diagnostics; Biomarker; Rare mutations; Sequencing error correction; Overlapping read pairs; RARE MUTATIONS; ERROR; IDENTIFICATION; TRANSMISSION; DIVERSITY; THERAPY;
D O I
10.1186/1471-2164-14-96
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Backgound: High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. Results: We demonstrate that overlapping read pairs (ORP) - generated by combining short fragment sequencing libraries and longer sequencing reads - significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Conclusions: Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs
    Haiyin Chen-Harris
    Monica K Borucki
    Clinton Torres
    Tom R Slezak
    Jonathan E Allen
    BMC Genomics, 14
  • [2] Bias from removing read duplication in ultra-deep sequencing experiments
    Zhou, Wanding
    Chen, Tenghui
    Zhao, Hao
    Eterovic, Agda Karina
    Meric-Bernstam, Funda
    Mills, Gordon B.
    Chen, Ken
    BIOINFORMATICS, 2014, 30 (08) : 1073 - 1080
  • [3] Sensitive population profiling and genome assembly of HIV and Flaviviruses using ultra-deep sequencing technologies
    Henn, Matthew R.
    Lennon, Niall J.
    Newman, Ruchi
    Charlebois, Patrick
    Boutwell, Christian
    OhAinle, Molly
    Berlin, Aaron
    Ryan, Elizabeth
    Malboeuf, Christine
    Macalalad, Alex
    Casali, Monica
    Erlich, Rachel
    Bigelow, Henry
    Green, Lisa
    Gnerre, Sante
    Young, Sarah
    Levin, Joshua
    Nusbaum, Chad
    Walker, Bruce D.
    Diamond, Michael S.
    Kramer, Laura D.
    Ebel, Gregory D.
    Harris, Eva
    Allen, Todd M.
    Birren, Bruce W.
    GENOME BIOLOGY, 2010, 11
  • [4] Sensitive population profiling and genome assembly of HIV and Flaviviruses using ultra-deep sequencing technologies
    Matthew R Henn
    Niall J Lennon
    Ruchi Newman
    Patrick Charlebois
    Christian Boutwell
    Molly OhAinle
    Aaron Berlin
    Elizabeth Ryan
    Christine Malboeuf
    Alex Macalalad
    Monica Casali
    Rachel Erlich
    Henry Bigelow
    Lisa Green
    Sante Gnerre
    Sarah Young
    Joshua Levin
    Chad Nusbaum
    Bruce D Walker
    Michael S Diamond
    Laura D Kramer
    Gregory D Ebel
    Eva Harris
    Todd M Allen
    Bruce W Birren
    Genome Biology, 11
  • [5] Ultra-deep, long-read nanopore sequencing of mock microbial community standards
    Nicholls, Samuel M.
    Quick, Joshua C.
    Tang, Shuiquan
    Loman, Nicholas J.
    GIGASCIENCE, 2019, 8 (05):
  • [6] Empirical evaluation of variant calling accuracy using ultra-deep whole-genome sequencing data
    Kishikawa, Toshihiro
    Okada, Yukinori
    CANCER SCIENCE, 2018, 109 : 1043 - 1043
  • [7] Empirical evaluation of variant calling accuracy using ultra-deep whole-genome sequencing data
    Kishikawa, Toshihiro
    Momozawa, Yukihide
    Ozeki, Takeshi
    Mushiroda, Taisei
    Inohara, Hidenori
    Kamatani, Yoichiro
    Kubo, Michiaki
    Okada, Yukinori
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] Empirical evaluation of variant calling accuracy using ultra-deep whole-genome sequencing data
    Toshihiro Kishikawa
    Yukihide Momozawa
    Takeshi Ozeki
    Taisei Mushiroda
    Hidenori Inohara
    Yoichiro Kamatani
    Michiaki Kubo
    Yukinori Okada
    Scientific Reports, 9
  • [9] Protease inhibitor resistance remains even after mutant strains become undetectable using ultra-deep sequencing
    Kan, Hiromi
    Imamura, Michio
    Hiraga, Nobuhiko
    Hayes, C. Nelson
    Uchida, Takuro
    Miyaki, Eisuke
    Tsuge, Masataka
    Abe-Chayama, Hiromi
    Aikata, Hiroshi
    Miki, Daiki
    Ochi, Hidenori
    Ishida, Yuji
    Tateno, Chise
    Chayama, Kazuaki
    HEPATOLOGY, 2016, 64 : 430A - 430A
  • [10] Transcriptional Profiling of Day 12 Porcine Embryonic Disc and Trophectoderm Samples Using Ultra-Deep Sequencing Technologies
    Isom, S. Clay
    Spollen, William G.
    Blake, Sean M.
    Bauer, Bethany K.
    Springer, Gordon K.
    Prather, Randall S.
    MOLECULAR REPRODUCTION AND DEVELOPMENT, 2010, 77 (09) : 812 - 819