Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions

被引:14
|
作者
Amat, S. [1 ]
Argyros, Ioannis K. [2 ]
Busquier, S. [1 ]
Alberto Magrenan, A. [3 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Univ Int La Rioja, Escuela Ingn, Av Gran Via Rey Juan Carlos I 41, Logrono 26002, La Rioja, Spain
关键词
Jarratt-like method; Banach space; Local convergence; Dynamics; RATIONAL CUBIC METHODS; RECURRENCE RELATIONS; R-ORDER; FAMILY;
D O I
10.1007/s11075-016-0152-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212-223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24-32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257-264 1977; Candela and Marquina. Computing 44, 169-184 1990; Candela and Marquina. Computing 45(4), 355-367 1990; Chun. Appl. Math. Comput. 190(2), 1432-1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686-698 2007; Deghan. Comput. Appl Math. 29(1), 19-30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513-519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356-365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686-698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356-365 2012; Ezquerro and Hernandez. Appl. Math. Optim. 41(2), 227-236 2000; Ezquerro and Hernandez. BIT Numer. Math. 49, 325-342 2009; Ezquerro and Hernandez. J. Math. Anal. Appl. 303, 591-601 2005; Guti,rrez and Hernandez. Comput. Math. Appl. 36(7), 1-8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21-31 1991; Gonzalez-Crespo et al. Expert Syst. Appl. 40(18), 7381-7390 2013; Hernandez. Comput. Math. Appl. 41(3-4), 433-455 2001; Hernandez and Salanova. Southwest J. Pure Appl. Math. 1, 29-40 1999; Jarratt. Math. Comput. 20(95), 434-437 1966; Kou and Li. Appl. Math. Comput. 189, 1816-1821 2007; Kou and Wang. Numer. Algor. 60, 369-390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60-66 2010; Magrean. Appl. Math. Comput. 233, 29-38 2014; Magrean. Appl. Math. Comput. 248, 215-224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873-887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585-603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129-142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468-477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441-456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fr,chet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study.
引用
收藏
页码:371 / 391
页数:21
相关论文
共 31 条
  • [1] Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions
    S. Amat
    Ioannis K. Argyros
    S. Busquier
    Á. Alberto Magreñán
    Numerical Algorithms, 2017, 74 : 371 - 391
  • [2] A Unified Local Convergence for Jarratt-type Methods in Banach Space Under Weak Conditions
    Argyros, Ioannis K.
    George, Santhosh
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (01): : 165 - 176
  • [3] Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions
    Argyros, Ioannis K.
    George, Santhosh
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (02): : 221 - 231
  • [4] On the local convergence of Kung-Traub’s two-point method and its dynamics
    Parandoosh Ataei Delshad
    Taher Lotfi
    Applications of Mathematics, 2020, 65 : 379 - 406
  • [5] On the local convergence of Kung-Traub's two-point method and its dynamics
    Delshad, Parandoosh Ataei
    Lotfi, Taher
    APPLICATIONS OF MATHEMATICS, 2020, 65 (04) : 379 - 406
  • [6] Local Convergence of Jarratt-Type Methods with Less Computation of Inversion Under Weak Conditions
    Argyros, Ioannis K.
    George, Santhosh
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (02) : 228 - 236
  • [7] LOCAL CONVERGENCE OF INEXACT NEWTON-LIKE METHOD UNDER WEAK LIPSCHITZ CONDITIONS
    Ioannis K.ARGYROS
    Yeol Je CHO
    Santhosh GEORGE
    肖义彬
    ActaMathematicaScientia, 2020, 40 (01) : 199 - 210
  • [8] Local Convergence of Inexact Newton-Like Method under Weak Lipschitz Conditions
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    Xiao, Yibin
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 199 - 210
  • [9] Local Convergence of Inexact Newton-Like Method under Weak Lipschitz Conditions
    Ioannis K. Argyros
    Yeol Je Cho
    Santhosh George
    Yibin Xiao
    Acta Mathematica Scientia, 2020, 40 : 199 - 210
  • [10] ON THE CONVERGENCE OF A NEWTON-LIKE METHOD UNDER WEAK CONDITIONS
    Argyros, Ioannis K.
    Ren, Hongmin
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (04): : 575 - 584