Filtering and Estimation for a Class of Stochastic Volatility Models with Intractable Likelihoods

被引:10
|
作者
Vankov, Emilian R. [1 ]
Guindani, Michele [2 ]
Ensor, Katherine B. [3 ]
机构
[1] Rice Univ, Baker Inst Publ Policy, POB 1892, Houston, TX 77251 USA
[2] Univ Calif Irvine, Dept Stat, 2241 Bren Hall, Irvine, CA 92697 USA
[3] Rice Univ, Dept Stat, 2053 Duncan Hall, Houston, TX 77251 USA
来源
BAYESIAN ANALYSIS | 2019年 / 14卷 / 01期
基金
美国国家科学基金会;
关键词
particle Markov chain Monte Carlo; auxiliary particle filter; approximate Bayesian computation; stable distribution; APPROXIMATE BAYESIAN COMPUTATION; SEQUENTIAL MONTE-CARLO; LONG MEMORY; INFERENCE; VARIANCE;
D O I
10.1214/18-BA1099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach to latent state filtering and parameter estimation for a class of stochastic volatility models (SVMs) for which the likelihood function is unknown. The alpha-stable stochastic volatility model provides a flexible framework for capturing asymmetry and heavy tails, which is useful when modeling financial returns. However, the alpha-stable distribution lacks a closed form for the probability density function, which prevents the direct application of standard Bayesian filtering and estimation techniques such as sequential Monte Carlo and Markov chain Monte Carlo. To obtain filtered volatility estimates, we develop a novel approximate Bayesian computation (ABC) based auxiliary particle filter, which provides improved performance through better proposal distributions. Further, we propose a new particle based MCMC (PMCMC) method for joint estimation of the parameters and latent volatility states. With respect to other extensions of PMCMC, we introduce an efficient single filter particle Metropolis-within-Gibbs algorithm which can be applied for obtaining inference on the parameters of an asymmetric alpha-stable stochastic volatility model. We show the increased efficiency in the estimation process through a simulation study. Finally, we highlight the necessity for modeling asymmetric alpha-stable SVMs through an application to propane weekly spot prices.
引用
收藏
页码:29 / 52
页数:24
相关论文
共 50 条
  • [1] ESTIMATION OF STOCHASTIC VOLATILITY MODELS BY NONPARAMETRIC FILTERING
    Kanaya, Shin
    Kristensen, Dennis
    [J]. ECONOMETRIC THEORY, 2016, 32 (04) : 861 - 916
  • [2] Estimation of Stochastic Volatility Models Using Optimized Filtering Algorithms
    Infante, Saba
    Luna, Cesar
    Sanchez, Luis
    Hernandez, Aracelis
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2019, 48 (02) : 73 - 96
  • [3] Asymmetric stable stochastic volatility models: estimation, filtering, and forecasting
    Blasques, Francisco
    Koopman, Siem Jan
    Moussa, Karim
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2024,
  • [4] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [5] Estimation of integrated volatility in stochastic volatility models
    Woerner, JHC
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (01) : 27 - 44
  • [6] Nonlinear Filtering of Asymmetric Stochastic Volatility Models and Value-at-Risk Estimation
    Nikolaev, Nikolay Y.
    de Menezes, Lilian M.
    Smirnov, Evgueni
    [J]. 2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING & ECONOMICS (CIFER), 2014, : 310 - 317
  • [7] On filtering and estimation of a threshold stochastic volatility model
    Elliott, Robert J.
    Liew, Chuin Ching
    Siu, Tak Kuen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) : 61 - 75
  • [8] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Elena Ehrlich
    Ajay Jasra
    Nikolas Kantas
    [J]. Methodology and Computing in Applied Probability, 2015, 17 : 315 - 349
  • [9] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Ehrlich, Elena
    Jasra, Ajay
    Kantas, Nikolas
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (02) : 315 - 349
  • [10] Linear filtering for asymmetric stochastic volatility models
    Kirby, Chris
    [J]. ECONOMICS LETTERS, 2006, 92 (02) : 284 - 292