Broadband infrared and THz transmitting silicon core optical fiber

被引:14
|
作者
Sorgard, Trygve [1 ]
Song, Seunghan [1 ]
Vullum, Per Erik [1 ,2 ]
Kores, Cristine [3 ]
Molster, Kjell Martin [3 ]
Laurell, Fredrik [3 ]
Hawkins, Thomas [4 ]
Ballato, John [4 ]
Osterberg, Ulf L. [3 ,5 ]
Gibson, Ursula J. [1 ,3 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway
[2] SINTEF Ind, NO-7046 Trondheim, Norway
[3] KTH, Dept Appl Phys, Royal Inst Technol, S-10691 Stockholm, Sweden
[4] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
[5] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
基金
瑞典研究理事会;
关键词
WAVE-GUIDE; GOLD;
D O I
10.1364/OME.403591
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon waveguide structures are a viable alternative for the transmission of signals over a wide range of frequencies, and new fabrication methods are key to increased applications. In this work, THz transparency of silicon-core, silica clad fibers, refined using a traveling solvent method, is demonstrated. The approximate to 200 mu m core of these fibers is shown to have good transmission from 4.8-9 mu m and 1-7 THz. Fibers were drawn on a conventional optical fiber tower using the scalable molten core technique and CO2 laser annealed, resulting in large-grain crystalline cores with broadband transmission. The spectral properties are comparable to those of rectangular guides of similar cross-sectional area cut from high resistivity float zone silicon wafers. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2491 / 2499
页数:9
相关论文
共 50 条
  • [1] Large-core, broadband optical fiber
    Sakai, Jun-ichi
    Kimura, Tatsuya
    [J]. OPTICS LETTERS, 1977, 1 (05) : 169 - 171
  • [2] Tapered submicron silicon core fiber for broadband wavelength conversion
    Wu, D.
    Shen, L.
    Lacava, C.
    Petropoulos, P.
    Hawkins, T.
    Ballato, J.
    Gibson, U. J.
    Peacock, A. C.
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [3] Fluoride glass infrared transmitting fiber
    Lin, Fengying
    Hu, Hefang
    Yi, Guanhong
    [J]. Hongwai jishu, 1992, 14 (06): : 5 - 10
  • [4] Broadband Optical Fiber-Facet Silicon Pressure Sensor
    Lorenzo, Simon
    Wong, Yu-Po
    Solgaard, Olav
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [5] Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber
    Bai, Hangyu
    Yang, Xiong
    Wei, Yizhen
    Gao, Shiming
    [J]. APPLIED OPTICS, 2016, 55 (03) : 515 - 521
  • [6] Organic Broadband THz Generators Optimized for Efficient Near-Infrared Optical Pumping
    Shin, Myeong-Hoon
    Kim, Won Tae
    Kim, Se-In
    Kim, Seung-Jun
    Yu, In Cheol
    Kim, Sang-Wook
    Jazbinsek, Mojca
    Yoon, Woojin
    Yun, Hoseop
    Rotermund, Fabian
    Kwon, O-Pil
    [J]. ADVANCED SCIENCE, 2020, 7 (20)
  • [7] The influence of core geometry on the crystallography of silicon optical fiber
    Morris, Stephanie
    McMillen, Colin
    Hawkins, Thomas
    Foy, Paul
    Stolen, Roger
    Ballato, John
    Rice, Robert
    [J]. JOURNAL OF CRYSTAL GROWTH, 2012, 352 (01) : 53 - 58
  • [8] Reactive molten core fabrication of silicon optical fiber
    Morris, S.
    Hawkins, T.
    Foy, P.
    McMillen, C.
    Fan, J.
    Zhu, L.
    Stolen, R.
    Rice, R.
    Ballato, J.
    [J]. OPTICAL MATERIALS EXPRESS, 2011, 1 (06): : 1141 - 1149
  • [9] 2∼5 THz broadband high birefringence Terahertz photonic crystal fiber with porous core
    Hui Zhan-Qiang
    Zhang Tian-Tian
    Han Dong-Dong
    Zhao Feng
    Zhang Mei-Zhi
    Gong Jia-Min
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2021, 40 (05) : 616 - 626
  • [10] Broadband NIR luminescence in double-core germanate optical fiber
    Kochanowicz, Marcin
    Sadowska, Karolina
    Markowski, Krzysztof
    Zmojda, Jacek
    Miluski, Piotr
    Baranowska, Agata
    Kuwik, Marta
    Lesniak, Magdalena
    Pisarska, Joanna
    Pisarski, Wojciech A.
    Jan, Dorosz
    Dorosz, Dominik
    [J]. FIBER LASERS AND GLASS PHOTONICS: MATERIALS THROUGH APPLICATIONS III, 2022, 12142