New results on two hypercube coloring problems

被引:3
|
作者
Fu, Fang-Wei [1 ,2 ]
Ling, San [3 ]
Xing, Chaoping [3 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
中国国家自然科学基金;
关键词
Hypercube; Coloring problem; Coding theory; Linear codes; Z(4)-linear codes; Forbidden distance codes; CODES;
D O I
10.1016/j.dam.2013.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following two hypercube coloring problems: given n and d, find the minimum number of colors, denoted as chi(d)'(n) (resp. chi(d)(n)), needed to color the vertices of the n-cube such that any two vertices with Hamming distance at most d (resp. exactly d) have different colors. These problems originally arose in the study of the scalability of optical networks. Using methods in coding theory, we show that chi(5)'(2(r+1)) = 4(r+1) for any odd number r >= 3, and give two upper bounds on chi(d)(n). The first upper bound improves on that of Kim, Du and Pardalos. The second upper bound improves on the first one for small n. Furthermore, we derive an inequality on chi(d)(n) and chi(d)'(n). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2937 / 2945
页数:9
相关论文
共 50 条
  • [1] New bounds on a hypercube coloring problem
    Ngo, HQ
    Du, DZ
    Graham, RL
    [J]. INFORMATION PROCESSING LETTERS, 2002, 84 (05) : 265 - 269
  • [2] A general framework for coloring problems: Old results, new results, and open problems
    Broersma, H
    [J]. COMBINATORIAL GEOMETRY AND GRAPH THEORY, 2005, 3330 : 65 - 79
  • [3] A radio coloring of a hypercube
    Frieder, O
    Harary, F
    Wan, PJ
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (06) : 665 - 670
  • [4] On a hypercube coloring problem
    Östergard, PRJ
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 108 (02) : 199 - 204
  • [5] New bounds on a hypercube coloring problem and linear codes
    Ngo, HQ
    Du, DZ
    Graham, RL
    [J]. INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: CODING AND COMPUTING, PROCEEDINGS, 2001, : 542 - 546
  • [6] Two results about the hypercube
    Balogh, Jozsef
    Meszaros, Lamas
    Wagner, Adam Zsolt
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 247 : 322 - 326
  • [7] The Intersection of Two Vertex Coloring Problems
    Angèle M. Foley
    Dallas J. Fraser
    Chính T. Hoàng
    Kevin Holmes
    Tom P. LaMantia
    [J]. Graphs and Combinatorics, 2020, 36 : 125 - 138
  • [8] Two coloring problems on matrix graphs
    Han, Zhe
    Lu, Mei
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (03)
  • [9] On two coloring problems in mixed graphs
    Ries, B.
    de Werra, D.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) : 712 - 725
  • [10] The Intersection of Two Vertex Coloring Problems
    Foley, Angele M.
    Fraser, Dallas J.
    Hoang, Chinh T.
    Holmes, Kevin
    LaMantia, Tom P.
    [J]. GRAPHS AND COMBINATORICS, 2020, 36 (01) : 125 - 138