A note on α-total domination in cubic graphs

被引:1
|
作者
Chen, Xue-gang [1 ]
Gao, Ting [1 ]
机构
[1] North China Elect Power Univ, Dept Math, Beijing 102206, Peoples R China
关键词
Total domination; alpha-total domination; Cubic graph; UPPER-BOUNDS; NETWORKS;
D O I
10.1016/j.dam.2016.09.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph with no isolated vertex. A subset of vertices S is a total dominating set if every vertex of G is adjacent to some vertex of S. For some alpha with 0 < alpha <= 1, a total dominating set S in G is an alpha-total dominating set if for every vertex v is an element of V \ S, vertical bar N(v) boolean AND S vertical bar >= alpha vertical bar N(v)vertical bar. The alpha-total domination number of G, denoted by gamma(alpha t) (G), is the minimum cardinality of an alpha-total dominating set of G. In Henning and Rad (2042), Henning and Rad posed the following question: Let G be a connected cubic graph with order n. Is it true that gamma(alpha t) (G) <= 3n/4 for 2/3 < alpha <= 1 ? In this paper, we give a positive answer toward this question. Furthermore, we give a characterization on cubic graphs attaining the bound for the alpha-total domination number. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:718 / 721
页数:4
相关论文
共 50 条
  • [1] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    [J]. Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [2] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276
  • [3] Note on domination and minus domination numbers in cubic graphs
    Chen, YJ
    Cheng, TCE
    Ng, CT
    Shan, EF
    [J]. APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1062 - 1067
  • [4] Total Restrained Domination in Cubic Graphs
    Hongxing Jiang
    Liying Kang
    Erfang Shan
    [J]. Graphs and Combinatorics, 2009, 25 : 341 - 350
  • [5] Total domination in cubic Knodel graphs
    Mojdeh, D. A.
    Musawi, S. R.
    Kiashi, E. Nazari
    Rad, N. Jafari
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 221 - 230
  • [6] Total Restrained Domination in Cubic Graphs
    Jiang, Hongxing
    Kang, Liying
    Shan, Erfang
    [J]. GRAPHS AND COMBINATORICS, 2009, 25 (03) : 341 - 350
  • [7] Domination and total domination in cubic graphs of large girth
    Dantas, Simone
    Joos, Felix
    Loewenstein, Christian
    Machado, Deiwison S.
    Rautenbach, Dieter
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 174 : 128 - 132
  • [8] Total forcing versus total domination in cubic graphs
    Dayila, Randy
    Henning, Michael A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 : 385 - 395
  • [9] A note on neighborhood total domination in graphs
    NADER JAFARI RAD
    [J]. Proceedings - Mathematical Sciences, 2015, 125 : 271 - 276
  • [10] A note on neighborhood total domination in graphs
    Rad, Nader Jafari
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (03): : 271 - 276