Realisation of a Geodetic Datum Using a Gridded Absolute Deformation Model (ADM)

被引:1
|
作者
Stanaway, R. [1 ]
Roberts, C. [1 ]
Blick, G. [2 ]
机构
[1] Univ New S Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[2] Land Informat New Zealand, Wellington 6145, New Zealand
来源
EARTH ON THE EDGE: SCIENCE FOR A SUSTAINABLE PLANET | 2014年 / 139卷
关键词
Semi-kinematic datum; Dynamic datum; PPP; Reference frame; Deformation Model; PLATE MOTIONS;
D O I
10.1007/978-3-642-37222-3_34
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper describes a schema for a gridded absolute deformation model (ADM) and non-linear deformation patch model that can be used to transform point positions captured in the International Terrestrial Reference Frame (ITRF), or other closely aligned reference frame, to a reference epoch consistently over time for practical applications. The schema described utilises existing models of rigid plate motion, plate boundary deformation and non-linear deformation (e.g. coseismic and postseismic effects or subsidence). Application of an ADM and patch model can enable consistent Precise Point Positioning (PPP) over time and seamless integration of Continuously Operating Reference Station (CORS) networks within deforming zones. The strategy described can also ensure consistency of time-tagged spatial datasets (e.g. laser scanned point clouds and digital cadastral databases) and GIS within a kinematic environment. An ADM can also be used as the basis for static epoch projections of a national or regional kinematic datum. A case study from New Zealand is described.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [1] Geodetic Strain to Study the Deformation Model of Indonesian Semi Dynamic Datum 2013
    Susilo
    Meilano, Irwan
    Abidin, Hasanuddin Z.
    Sarsito, Dina A.
    Sapiie, Benyamin
    Efendi, Joni
    INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2017, 2018, 1987
  • [2] A High-Precision Deformation Model to Support Geodetic Datum Modernisation in Australia
    Stanaway, R.
    Roberts, C.
    IAG 150 YEARS, 2016, 143 : 149 - 157
  • [3] From geophysics to geodetic datum: updating the NZGD2000 deformation model
    Crook, Chris
    Donnelly, Nic
    Beavan, John
    Pearson, Chris
    NEW ZEALAND JOURNAL OF GEOLOGY AND GEOPHYSICS, 2016, 59 (01) : 22 - 32
  • [4] Construction of the new Japan Datum using space geodetic technologies
    Ogi, S
    Murakami, M
    TOWARDS AN INTEGRATED GLOBAL GEODETIC OBSERVING SYSTEM (IGGOS), 2000, 120 : 103 - 105
  • [5] DEFENITION OF APPROPRIATE GEODETIC DATUM USING ROBUST STATISTICAL METHODS
    Marjetic, Ales
    Kregar, Klemen
    GEODETSKI VESTNIK, 2016, 60 (02) : 212 - 226
  • [6] The Development of Continuous Hydrographic Datum Using Geodetic Based Approaches: A Review
    Abd Rahman, Mohd Faizuddin
    Din, Ami Hassan Md
    10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540
  • [7] Absolute profile-measurement using software datum
    Gao, Wei
    Kiyono, Satoshi
    Okuyama, Eiki
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 1994, 60 (04): : 554 - 558
  • [8] Positioning model and analysis of the sailing circle mode of seafloor geodetic datum points
    Zeng A.
    Yang Y.
    Ming F.
    Ma Y.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (07): : 939 - 952
  • [9] A gravitational telescope deformation model for geodetic VLBI
    Sten Bergstrand
    Magnus Herbertsson
    Carsten Rieck
    Jörgen Spetz
    Claes-Göran Svantesson
    Rüdiger Haas
    Journal of Geodesy, 2019, 93 : 669 - 680
  • [10] A gravitational telescope deformation model for geodetic VLBI
    Bergstrand, Sten
    Herbertsson, Magnus
    Rieck, Carsten
    Spetz, Jorgen
    Svantesson, Claes-Goeran
    Haas, Rudiger
    JOURNAL OF GEODESY, 2019, 93 (05) : 669 - 680