On the convergence of inexact augmented Lagrangian methods for problems with convex constraints

被引:2
|
作者
Galvan, Giulio [1 ]
Lapucci, Matteo [1 ]
机构
[1] Univ Firenze, DINFO, Via Santa Marta 3, I-50139 Florence, Italy
关键词
Augmented Lagrangian method; Nonlinear programming; Global convergence; Convex constraints;
D O I
10.1016/j.orl.2019.03.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the augmented Lagrangian method (ALM) for constrained optimization problems in the presence of convex inequality and convex abstract constraints. We focus on the case where the Lagrangian sub-problems are solved up to approximate stationary points, with increasing accuracy. We analyze two different criteria of approximate stationarity for the sub-problems and we prove the global convergence to stationary points of ALM in both cases. (C) 2019 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:185 / 189
页数:5
相关论文
共 50 条
  • [1] On the rate analysis of inexact augmented Lagrangian schemes for convex optimization problems with misspecified constraints
    Ahmadi, H.
    Aybat, N. S.
    Shanbhag, U. V.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4841 - 4846
  • [2] On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming
    Liu, Ya-Feng
    Liu, Xin
    Ma, Shiqian
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (02) : 632 - 650
  • [3] Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming
    Yangyang Xu
    Mathematical Programming, 2021, 185 : 199 - 244
  • [4] Adaptive inexact fast augmented Lagrangian methods for constrained convex optimization
    Andrei Patrascu
    Ion Necoara
    Quoc Tran-Dinh
    Optimization Letters, 2017, 11 : 609 - 626
  • [5] Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming
    Xu, Yangyang
    MATHEMATICAL PROGRAMMING, 2021, 185 (1-2) : 199 - 244
  • [6] Adaptive inexact fast augmented Lagrangian methods for constrained convex optimization
    Patrascu, Andrei
    Necoara, Ion
    Quoc Tran-Dinh
    OPTIMIZATION LETTERS, 2017, 11 (03) : 609 - 626
  • [7] GLOBAL CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS APPLIED TO OPTIMIZATION PROBLEMS WITH DEGENERATE CONSTRAINTS, INCLUDING PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS
    Izmailov, A. F.
    Solodov, M. V.
    Uskov, E. I.
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) : 1579 - 1606
  • [8] Inexact accelerated augmented Lagrangian methods
    Kang, Myeongmin
    Kang, Myungjoo
    Jung, Miyoun
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (02) : 373 - 404
  • [9] Augmented Lagrangian Methods for Convex Matrix Optimization Problems
    Ying Cui
    Chao Ding
    Xu-Dong Li
    Xin-Yuan Zhao
    Journal of the Operations Research Society of China, 2022, 10 : 305 - 342
  • [10] Inexact accelerated augmented Lagrangian methods
    Myeongmin Kang
    Myungjoo Kang
    Miyoun Jung
    Computational Optimization and Applications, 2015, 62 : 373 - 404