Topological rearrangements and local search method for tandem duplication trees

被引:13
|
作者
Bertrand, D [1 ]
Gascuel, O [1 ]
机构
[1] Univ Montpellier 2, CNRS,UMR 5506, LIRMM, Projet Methodes & Algorithmes Bioinformat, F-34392 Montpellier 5, France
关键词
tandem duplication trees; phylogeny; topological rearrangements; local search; parsimony; minimum evolution; Zinc finger genes;
D O I
10.1109/TCBB.2005.15
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The problem of reconstructing the duplication history of a set of tandemly repeated sequences was first introduced by Fitch [4]. Many recent studies deal with this problem, showing the validity of the unequal recombination model proposed by Fitch, describing numerous inference algorithms, and exploring the combinatorial properties of these new mathematical objects, which are duplication trees. In this paper, we deal with the topological rearrangement of these trees. Classical rearrangements used in phylogeny (NNI, SPR, TBR,...) cannot be applied directly on duplication trees. We show that restricting the neighborhood defined by the SPR (Subtree Pruning and Regrafting) rearrangement to valid duplication trees, allows exploring the whole duplication tree space. We use these restricted rearrangements in a local search method which improves an initial tree via successive rearrangements. This method is applied to the optimization of parsimony and minimum evolution criteria. We show through simulations that this method improves all existing programs for both reconstructing the topology of the true tree and recovering its duplication events. We apply this approach to tandemly repeated human Zinc finger genes and observe that a much better duplication tree is obtained by our method than using any other program.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [1] Topological rearrangements and local search method for tandem duplication trees
    Bertrand, D
    Gascuel, O
    [J]. ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2004, 3240 : 374 - 387
  • [2] On counting tandem duplication trees
    Yang, YL
    Zhang, LX
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (06) : 1160 - 1163
  • [3] The combinatorics of tandem duplication trees
    Gascuel, O
    Hendy, MD
    Jean-Marie, A
    McLachlan, R
    [J]. SYSTEMATIC BIOLOGY, 2003, 52 (01) : 110 - 118
  • [4] A similarity measure between tandem duplication trees
    Koperwas, Jakub
    Walczak, Krzysztof
    [J]. INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2006, : 163 - +
  • [5] EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements
    Hartmann, Tom
    Bernt, Matthias
    Middendorf, Martin
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [6] EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements
    Tom Hartmann
    Matthias Bernt
    Martin Middendorf
    [J]. BMC Bioinformatics, 19
  • [7] Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference
    Chernomor, Olga
    Bui Quang Minh
    von Haeseler, Arndt
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2015, 22 (12) : 1129 - 1142
  • [8] Greedy method for inferring tandem duplication history
    Zhang, LX
    Ma, B
    Wang, LS
    Xu, Y
    [J]. BIOINFORMATICS, 2003, 19 (12) : 1497 - 1504
  • [9] An efficient and accurate distance based algorithm to reconstruct tandem duplication trees
    Elemento, O
    Gascuel, O
    [J]. BIOINFORMATICS, 2002, 18 : S92 - S99
  • [10] Study of Homologous Recombination and Chromosomal Rearrangements inEscherichia coliStrains Carrying a Heterozygous Tandem Duplication
    V. V. Sukhodolets
    S. G. Botina
    M. A. Trenina
    L. S. Ukhabotina
    [J]. Russian Journal of Genetics, 2001, 37 : 476 - 485