Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation

被引:45
|
作者
Yang, Dong [1 ]
Ma, Fei [1 ]
Sun, Yunjin [1 ]
Hu, Tingwei [1 ]
Xu, Kewei [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Xian Univ Arts & Sci, Dept Phys & Optelect Engn, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene nanoribbons; Defects; Thermal conductivity;
D O I
10.1016/j.apsusc.2012.06.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal conductivity of defected graphene nanoribbons(GNRs) was studied using equilibrium molecular dynamics simulation. It was demonstrated that the thermal conductivity of GNRs is extremely sensitive to defect configuration. The enhanced scattering at the boundaries will reduce thermal conductivity, the narrower the ribbon is, the stronger the boundary effect is. Hydrogen passivation is exploited to weaken the boundary effect, new scattering mechanisms, however, appears due to sp(2)-to-sp(3) transformation as well as mass difference between hydrogen and carbon. Moreover, Stone-Wales (SW) defects may increase the scattering of phonons and thus reduce thermal conductivity, especially in the case with SW defect arrays perpendicular to the direction of heat flow. Therefore, the defects should be avoided in the fabrication of graphene for good thermal conductivity. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:9926 / 9931
页数:6
相关论文
共 50 条
  • [1] Non equilibrium molecular dynamics simulation study of thermal conductivity in doped graphene nanoribbons
    Kipper, Ana Claudia
    da Silva, Leandro Barros
    PHYSICA B-CONDENSED MATTER, 2019, 556 : 1 - 5
  • [2] Effect of vacancy defects on the thermal conductivity of graphene nanoribbons: A molecular dynamics study
    Yang, P. (yangpingdm@ujs.edu.cn), 1600, Inderscience Publishers (06):
  • [3] Impact of vacancies on the thermal conductivity of graphene nanoribbons: A molecular dynamics simulation study
    Noshin, Maliha
    Khan, Asir Intisar
    Navid, Ishtiaque Ahmed
    Uddin, H. M. Ahsan
    Subrina, Samia
    AIP ADVANCES, 2017, 7 (01)
  • [4] Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation
    Chao Zhang
    Xiao-Li Hao
    Cui-Xia Wang
    Ning Wei
    Timon Rabczuk
    Scientific Reports, 7
  • [5] Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation
    Zhang, Chao
    Hao, Xiao-Li
    Wang, Cui-Xia
    Wei, Ning
    Rabczuk, Timon
    SCIENTIFIC REPORTS, 2017, 7
  • [6] Molecular Dynamics Calculation of Thermal Conductivity of Graphene Nanoribbons
    Hu, Jiuning
    Ruan, Xiulin
    Jiang, Zhigang
    Chen, Yong P.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 135 - +
  • [7] Thermal conductivity of graphene/graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations
    Kim, Jong-Chol
    Wi, Ju-Hyok
    Ri, Nam-Chol
    Ri, Su-Il
    SOLID STATE COMMUNICATIONS, 2021, 328
  • [8] Thermal Conductivity of Silicene Nanoribbons: An Equilibrium Molecular Dynamics Study
    Jahan, Nusrat
    Navid, Ishtiaque Ahmed
    Subrina, Samia
    2018 4TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2018), 2018, : 121 - 124
  • [9] Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study
    Hu, Jiuning
    Ruan, Xiulin
    Chen, Yong P.
    NANO LETTERS, 2009, 9 (07) : 2730 - 2735
  • [10] Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons
    Haiying Yang
    Yunqing Tang
    Jie Gong
    Yu Liu
    Xiaoliang Wang
    Yanfang Zhao
    Ping Yang
    Shuting Wang
    Journal of Molecular Modeling, 2013, 19 : 4781 - 4788